Scale formation including those formed by iron sulfides have been a major hassle in the upstream sector of the oil and gas industry for many decades. Iron Sulfide scales including pyrite (FeS2) and troilite (FeS) often form a precipitate in the matrix formation, tubulars and other downhole equipment in the wells resulting in plant shutdown. Herein, a molecular modelling tool known as Density Functional Theory (DFT) is used to study the binding affinity of chelating agents to ferrous ion, which is the state of iron in pyrite scale. The calculated binding affinity of the chelating agents to Fe2+ increased in the order; GLDA < HEDTA < EDTA < DTPA which correlated with what has been reported experimentally. The number of nitrogen atoms in a chelating agent plays a predominant role in its binding ability. This could give insights on how novel chemicals could be designed which would be more effective and environmentally friendly in iron sulfide scale removal.


Article metrics loading...

Loading full text...

Full text loading...


  1. Kamal, M. S.; Hussein, I.; Mahmoud, M.; Sultan, A. S.; Saad, M. A. S.
    Oilfield Scale Formation and Chemical Removal: A Review. J. Pet. Sci. Eng. 2018, 171 (July), 127–139. https://doi.org/10.1016/j.petrol.2018.07.037.
    [Google Scholar]
  2. Olajire, A. A.
    A Review of Oilfield Scale Management Technology for Oil and Gas Production. J. Pet. Sci. Eng. 2015, 135, 723–737. https://doi.org/10.1016/J.PETROL.2015.09.011.
    [Google Scholar]
  3. Onawole, A. T.; Husseinl, I. A.; Saad, M. A.; Ahmed, M. E. M.; Nimir, H. I.
    Computational Screening of Potential Inhibitors of Desulfobacter Postgatei for Pyrite Scale Prevention in Oil and Gas Wells. BioRxiv2018, 327–957. https://doi.org/10.1101/327957.
    [Google Scholar]
  4. Ahmed, M. E. M.; Saad, M. A.; Hussein, I. A.; Onawole, A. T.; Mahmoud, M.
    Pyrite Scale Removal Using Green Formulations for Oil and Gas Applications: Reaction Kinetics. Energy and Fuels2019, 33 (5), 4499–4505. https://doi.org/10.1021/acs.energyfuels.9b00444.
    [Google Scholar]
  5. Mahmoud, M.; Hussein, I. A.; Sultan, A.; Saad, M. A.; Buijs, W.; Vlugt, T. J. H.
    Development of Efficient Formulation for the Removal of Iron Sulphide Scale in Sour Production Wells. Can. J. Chem. Eng. 2018, 96 (12), 2526–2533. https://doi.org/10.1002/cjce.23241.
    [Google Scholar]
  6. Onawole, A. T.; Hussein, I. A.; Saad, M. A.; Mahmoud, M.; Ahmed, M. E. M.; Nimir, H. I.
    Effect of PH on Acidic and Basic Chelating Agents Used in the Removal of Iron Sulfide Scales: A Computational Study. J. Pet. Sci. Eng. 2019, 178, 649–654. https://doi.org/10.1016/j.petrol.2019.03.075.
    [Google Scholar]
  7. Buijs, W.; Hussein, I. A.; Mahmoud, M.; Onawole, A. T.; Saad, M. A.; Berdiyorov, G. R.
    Molecular Modeling Study toward Development of H2S-Free Removal of Iron Sulfide Scale from Oil and Gas Wells. Ind. Eng. Chem. Res. 2018, 57 (31), 10095–10104. https://doi.org/10.1021/acs.iecr.8b01928.
    [Google Scholar]
  8. Seliman, A. A. A.; Altaf, M.; Onawole, A. T.; Al-Saadi, A.; Ahmad, S.; Alhoshani, A.; Bhatia, G.; Isab, A. A.
    Synthesis, Structure and Cytotoxicity Evaluation of Carbene-Based Gold(I) Complexes of Selenones. Inorganica Chim. Acta2018. https://doi.org/10.1016/j.ica.2018.01.032.
    [Google Scholar]
  9. Hosseini-Yazdi, S. A.; Samadzadeh-Aghdam, P.; Ghadari, R.
    Computational DFT Study on Nickel Symmetric Bis(Thiosemicarbazone) Complexes: Electronic Absorption and Redox Potentials. Polyhedron2019, 160, 35–41. https://doi.org/10.1016ZJ.POLY.2018.12.019.
    [Google Scholar]
  10. Salomon, O.; Reiher, M.; Hess, B. A.
    Assertion and Validation of the Performance of the B3LYP* Functional for the First Transition Metal Row and the G2 Test Set. J. Chem. Phys. 2002, 117 (10), 4729–4737. https://doi.org/10.1063/L1493179.
    [Google Scholar]
  11. Xu, X.; Truhlar, D. G.
    Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds. J. Chem. Theory Comput. 2011, 7 (9), 2766–2779. https://doi.org/10.1021/ct200234r.
    [Google Scholar]
  12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al.
    Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford CT. Gaussian, Inc. TS - CrossRef Metadata Search: Wallingford CT2013. https://doi.org/10.1063/PT.4.2023 M4 - Citavi.
    [Google Scholar]
  13. Tomasi, J.; Mennucci, B.; Cammi, R.
    Quantum Mechanical Continuum Solvation Models. Chem. Rev2005, No. 105, 2999–3093.
    [Google Scholar]
  14. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF
    . J. Comput. Chem. 2001, 22 (9), 931–967. https://doi.org/10.1002/jcc.1056.
    [Google Scholar]
  15. Kolodynska, D.
    Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters; InTech, 2011. https://doi.org/10.5772/32009.
    [Google Scholar]
  16. Tariq, A.; Hong, N. J.; Nasr-el-din, H.; Texas, A.
    Chelating Agents in Productivity Enhancement: A Review. Soc. Pet. Eng. 2017, 3 (March), 27–31.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error