1887

Abstract

Summary

A well-established method for fluid characterization is to use regression on the critical parameters of the grouped components of an equation of state (EOS) to replicate the results of fluid experiments performed in the laboratory, mainly constant composition expansion (CCE), constant volume depletion (CVD), and differential liberation (DL). In the case of many mature reservoirs, however, proper fluid laboratory examination is not available. This paper proposes an alternative fluid characterization methodology based on the Engler distillation test (ASTM86). Its objective is to help engineers derive key fluid parameters such as formation volume factors and oil-gas ratios in the absence or limitation of PVT-cell experimental data, based only on the Engler distillation test (ASTM86) results and a fluid composition up to C5+.

The suggested methodology was applied on multiple highly heterogeneous fields located in the Dnieper-Donetsk Basin in Eastern Ukraine and proved to be useful for all the fields of varying fluid types ranging from lean gas with a condensate yield (presence of C5+ per cubic meter of gas) of 10 g/m3 to very rich retrograde gases of 500 g/m3.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202010155
2020-12-08
2024-04-19
Loading full text...

Full text loading...

References

  1. ASTM D86-15
    ASTM D86-15 [2015] Standard test method for distillation of petroleum products and liquid fuels at atmospheric pressure. PA: ASTM International. http://www.astm.org
    [Google Scholar]
  2. Coats, K.H, Smart, G.T.
    [1986] Application of a regression-based EOS PVT program to laboratory data, «Society of Petroleum Engineers Reservoir Engineering», 1, 277–299.
    [Google Scholar]
  3. PedersenK.S. et al.
    (1989) Characterization of gascondensate mixtures, in: Chorn, L.G.,
    [Google Scholar]
  4. Mansoori, G.A.
    (edited by) C7+ fraction characterization, New York, Taylor & Francis, 137–152.
    [Google Scholar]
  5. Whitson, C. H.
    [1983] Characterizing Hydrocarbon Plus Fractions // SPE Reservoir Engineering. – 1983. – P. 683–694. SPE #12233.
    [Google Scholar]
  6. Whitson, C.H. and Brule, M.R.
    [2000] Phase Behavior. Richardson, Texas, 2000.SPE Monograph Series, Volume 20.
    [Google Scholar]
  7. Брусиловский, А.И. [2011] Методология и результаты применения кубических уравнений состояния для моделирования термодинамических свойств природных углеводородных флюидов / Актуальные вопросы исследований пластовых систем месторождений углеводородов: сб. науч. статей в 2 ч. – М.: Газпром ВНИИГАЗ, 2011. – ч. 2. – с. 150–165. – (Вести газовой науки).
    [Google Scholar]
  8. Григорьев, Б.А., Брусиловский, А.И. Зинченко, И.А. [2016] Математическое моделирование пластовых систем, уравнения состояния и фазовые равновесия пластовых флюидов и их компонентов // Вести газовой науки. – 2016. – №4 (28). – С. 13–20
    [Google Scholar]
  9. Ющенко Т.С., Брусиловский А.И. [2015] Эффективный метод построения и адаптации PVT- моделей пластовых флюидов газоконденсатных месторождений и газовых шапок нефтегазоконденсатных залежей // Нефтяное хозяйство. – 2015. – №1. – С. 56–60.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202010155
Loading
/content/papers/10.3997/2214-4609.202010155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error