Full text loading...
-
Generalised Algorithm and Implementation of Topography Within Finite Difference Wave Solvers
- Publisher: European Association of Geoscientists & Engineers
- Source: Conference Proceedings, 82nd EAGE Annual Conference & Exhibition, Oct 2021, Volume 2021, p.1 - 5
Abstract
Partial differential equation solvers based on the finite-difference method have for many years been a keystone of seismic processing and modelling applications, commonly found in practical migration and full-waveform inversion methods. Sharp density contrasts within the computational domain have potential to introduce numerical error: problematic when introducing topography to a seismic model. Including a simple step change in density to approximate an air layer compromises both stability and numerical accuracy, often requiring smoothing of the contrast, and inducing both first and second order errors in space. Topography can instead be implemented via an immersed boundary conforming to the surface. This is achieved by extrapolating the wavefield across the boundary to find solution values at necessary external nodes. As this process is confined to the pre-processing step, it has negligible effect on the computational cost of the simulation.
Devitoboundary is a tool in its early stages of development, intended to compliment Devito as a user-friendly means of including immersed boundaries in practical applications. 3D immersed boundaries can be constructed from irregularly sampled topography point clouds, via Delaunay triangulation coupled with a 1D extrapolation scheme. The result is a stable, error-free boundary which can be readily integrated with Devito models.