1887

Abstract

Summary

Control-volume based Discrete Fracture-Matrix (DFM) models have been increasingly used to simulate flow and transport in fractured porous media. The star-delta transformation is often used to eliminate the intermediate control volumes at fracture intersections. The star-delta transformation, however, assumes that the permeability at fracture intersections is very high. Therefore, it cannot accurately model the blocking effect at fracture intersections for example when a blocking fracture intersects a permeable one. In this work, we improve the star-delta transformation by making modifications to the calculation of transmissibility at fracture intersections so that the blocking effect at fracture intersections can be captured. To account for the permeability anisotropy in the matrix and the grid non-orthogonality resulting from unstructured meshing, the nonlinear finite volume methods are used to compute transmissibility for matrix-matrix connections. The linear two-point flux approximation (TPFA) is then used to couple the fracture and matrix together. Results of numerical experiments demonstrate that the improved star-delta transformation performs very well compared to the reference solution. When permeability of the matrix is anisotropic, the linear TPFA is not consistent in general and significant errors can be incurred. The nonlinear methods, on the other hand, captures the tonsorial effect in the matrix domain more accurately for all simulations.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202035010
2020-09-14
2021-09-27
Loading full text...

Full text loading...

References

  1. 1.Barenblatt, G.I., I.P.Zheltov, and I.N.Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics, 1960. 24(5): p. 1286–1303.
    [Google Scholar]
  2. 2.Warren, J.E. and P.J.Root, The Behavior of Naturally Fractured Reservoirs. Society of Petroleum Engineers Journal, 1963. 3(03): p. 245–255.
    [Google Scholar]
  3. 3.Kazemi, H., L.S.Merrill, Jr., K.L.Porterfield, and P.R.Zeman, Numerical Simulation of Water-Oil Flow in Naturally Fractured Reservoirs. Society of Petroleum Engineers Journal, 1976. 16(06): p. 317–326.
    [Google Scholar]
  4. 4.Thomas, L.K., T.N.Dixon, and R.G.Pierson, Fractured Reservoir Simulation. Society of Petroleum Engineers Journal, 1983. 23(01): p. 42–54.
    [Google Scholar]
  5. 5.Dean, R.H. and L.L.Lo, Simulations of Naturally Fractured Reservoirs. SPE Reservoir Engineering, 1988. 3(02): p. 638–648.
    [Google Scholar]
  6. 6.Pruess, K., A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media. Society of Petroleum Engineers Journal, 1985. 25(01): p. 14–26.
    [Google Scholar]
  7. 7.Geiger, S., S.Roberts, S.K.Matthäi, C.Zoppou, and A.Burri, Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media. Geofluids, 2004. 4(4): p. 284–299.
    [Google Scholar]
  8. 8.Firoozabadi, A. and J. E.Monteagudo, Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media. Water Resources Research40, W07405, Jul. 2004.
    [Google Scholar]
  9. 9.Matthäi, S.K., A.Mezentsev, and M.Belayneh, Control-Volume Finite-Element Two-Phase Flow Experiments with Fractured Rock Represented by Unstructured 3D Hybrid Meshes, in SPE Reservoir Simulation Symposium. 2005, Society of Petroleum Engineers: The Woodlands, Texas. p. 21.
    [Google Scholar]
  10. 10.Matthäi, S.K., S.Geiger, S.G.Roberts, A.Paluszny, M.Belayneh, A.Burri, A.Mezentsev, H.Lu, D.Coumou, T.Driesner, and C.A.Heinrich, Numerical simulation of multi-phase fluid flow in structurally complex reservoirs. Geological Society, London, Special Publications, 2007. 292(1): p. 405.
    [Google Scholar]
  11. 11.Paluszny, A., S.K.MatthÄI, and M.Hohmeyer, Hybrid finite element–finite volume discretization of complex geologic structures and a new simulation workflow demonstrated on fractured rocks. Geofluids, 2007. 7(2): p. 186–208.
    [Google Scholar]
  12. 12.Geiger-Boschung, S., S.K.Matthäi, J.Niessner, and R.Helmig, Black-Oil Simulations for Three-Component, Three-Phase Flow in Fractured Porous Media. SPE Journal, 2009. 14(02): p. 338–354.
    [Google Scholar]
  13. 13.Nick, H.M. and S.K.Matthäi, Comparison of Three FE-FV Numerical Schemes for Single- and Two-Phase Flow Simulation of Fractured Porous Media. Transport in Porous Media, 2011. 90(2): p. 421–444.
    [Google Scholar]
  14. 14.Hoteit, H. and A.Firoozabadi, An efficient numerical model for incompressible two-phase flow in fractured media. Advances in Water Resources, 2008. 31(6): p. 891–905.
    [Google Scholar]
  15. 15.Zidane, A. and A.Firoozabadi, An efficient numerical model for multicomponent compressible flow in fractured porous media. Advances in Water Resources, 2014. 74: p. 127–147.
    [Google Scholar]
  16. 16.Zidane, A. and A.Firoozabadi, Reservoir simulation of fractured media in compressible single-phase flow in 2D, 2.5D and 3D unstructured gridding. Advances in Water Resources, 2018. 121: p. 68–96.
    [Google Scholar]
  17. 17.Karimi-Fard, M., L.J.Durlofsky, and K.Aziz, An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE Journal, 2004. 9(02): p. 227–236.
    [Google Scholar]
  18. 18.Aziz, K., K.Aziz, and A.Settari, Petroleum reservoir simulation. 1979: Applied Science Publishers.
    [Google Scholar]
  19. 19.Aarnes, J.E., T.Gimse, and K.-A.Lie, An Introduction to the Numerics of Flow in Porous Media using Matlab, in Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF, G.Hasle, K.-A.Lie, and E.Quak, Editors. 2007, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 265–306.
    [Google Scholar]
  20. 20.Stefansson, I., I.Berre, and E.Keilegavlen, Finite-Volume Discretisations for Flow in Fractured Porous Media. Transport in Porous Media, 2018. 124(2): p. 439–462.
    [Google Scholar]
  21. 21.Sandve, T.H., I.Berre, and J.M.Nordbotten, An efficient multi-point flux approximation method for Discrete Fracture–Matrix simulations. Journal of Computational Physics, 2012. 231(9): p. 3784–3800.
    [Google Scholar]
  22. 22.Ahmed, R., M.G.Edwards, S.Lamine, B.A.H.Huisman, and M.Pal, Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model. Journal of Computational Physics, 2015. 284: p. 462–489.
    [Google Scholar]
  23. 23.Ahmed, R., M.G.Edwards, S.Lamine, B.A.H.Huisman, and M.Pal, Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. Journal of Computational Physics, 2015. 303: p. 470–497.
    [Google Scholar]
  24. 24.Ahmed, R., M.G.Edwards, S.Lamine, B.A.H.Huisman, and M.Pal, CVD-MPFA full pressure support, coupled unstructured discrete fracture–matrix Darcy-flux approximations. Journal of Computational Physics, 2017. 349: p. 265–299.
    [Google Scholar]
  25. 25.Nordbotten, J.M., I.Aavatsmark, and G.T.Eigestad, Monotonicity of control volume methods. Numerische Mathematik, 2007. 106(2): p. 255–288.
    [Google Scholar]
  26. 26.Edwards, M.G. and C.F.Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Computational Geosciences, 1998. 2(4): p. 259–290.
    [Google Scholar]
  27. 27.Keilegavlen, E. and I.Aavatsmark, Monotonicity for MPFA methods on triangular grids. Computational Geosciences, 2011. 15(1): p. 3–16.
    [Google Scholar]
  28. 28.Edwards, M.G. and H.Zheng, A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support. Journal of Computational Physics, 2008. 227(22): p. 9333–9364.
    [Google Scholar]
  29. 29.Zhang, W. and M.Al Kobaisi, A simplified enhanced MPFA formulation for the elliptic equation on general grids. Computational Geosciences, 2017. 21(4): p. 621–643.
    [Google Scholar]
  30. 30.Le Potier, C., Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés. Comptes Rendus Mathematique, 2005. 341(12): p. 787–792.
    [Google Scholar]
  31. 31.Lipnikov, K., M.Shashkov, D.Svyatskiy, and Y.Vassilevski, Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. Journal of Computational Physics, 2007. 227(1): p. 492–512.
    [Google Scholar]
  32. 32.Yuan, G. and Z.Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes. Journal of Computational Physics, 2008. 227(12): p. 6288–6312.
    [Google Scholar]
  33. 33.Wu, J. and Z.Gao, Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids. Journal of Computational Physics, 2014. 275: p. 569–588.
    [Google Scholar]
  34. 34.Schneider, M., B.Flemisch, and R.Helmig, Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media. International Journal for Numerical Methods in Fluids, 2017. 84(6): p. 352–381.
    [Google Scholar]
  35. 35.Le Potier, C., A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. International Journal on Finite Volumes, 2009: p. 1–20.
    [Google Scholar]
  36. 36.Gao, Z. and J.Wu, A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes. Journal of Computational Physics, 2013. 250: p. 308–331.
    [Google Scholar]
  37. 37.Zhang, W. and M.Al Kobaisi, Cell-centered nonlinear finite volume methods with improved robustness. SPE Journal, 2019.
    [Google Scholar]
  38. 38.Agelas, L., R.Eymard, and R.Herbin, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. Comptes Rendus Mathematique, 2009. 347(11): p. 673–676.
    [Google Scholar]
  39. 39.Martin, V., J.Jaffré, and J.Roberts, Modeling Fractures and Barriers as Interfaces for Flow in Porous Media. SIAM Journal on Scientific Computing, 2005. 26(5): p. 1667–1691.
    [Google Scholar]
  40. 40.Flemisch, B., I.Berre, W.Boon, A.Fumagalli, N.Schwenck, A.Scotti, I.Stefansson, and A.Tatomir, Benchmarks for single-phase flow in fractured porous media. Advances in Water Resources, 2018. 111: p. 239–258.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202035010
Loading
/content/papers/10.3997/2214-4609.202035010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error