1887

Abstract

Summary

The work is devoted to fundamental research aimed at the theoretical justification of an electromagnetic method for extracting electrophysical and structural information on the Bazhenov Formation as a unique oil-bearing stratum. The current lack of a common approach to its development, as well as the poor efficiency of the existing techniques for interpreting conventional geophysical methods data, necessitates the creation of new breakthrough technologies. We propose a method of pulsed sounding, which has a considerable depth of investigation and can be used in both well logging and crosshole measurements for identifying lateral heterogeneities and spatial localization of oil-promising zones in the interwell region. To study the electrophysical properties of the rocks exposed by subvertical, deviated and subhorizontal wells, highly efficient algorithmic and software tools were developed. They enable simulating pulsed sounding data and estimating the resolution of an observation system. We performed the numerical simulation and sensitivity analysis of the signals in typical models of the Bazhenov Formation, and showed that the new sounding method provides the capability of lateral tracking the top and bottom of the Bazhenov Formation, as well as studying the transition zone in the overlying and underlying deposits.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202053067
2020-11-16
2024-04-25
Loading full text...

Full text loading...

References

  1. Anderson, В., Chew, W.C.
    [1989] Transient Response of Some Borehole Mandrel Tools. Geophysics, 54(2), 216–224.
    [Google Scholar]
  2. Tabarovsky, L., Goldman, M., Rabinovich, M., Strack, K.
    [1996] 2.5-D Modeling in Electromagnetic Methods of Geophysics. Journal of Applied Geophysics, 35(4), 261–284.
    [Google Scholar]
  3. Онегова, Е.В., Эпов, М.И.
    [2011] Трехмерное моделирование нестационарного электромагнитного поля для задач геонавигации горизонтальных скважин. Геология и геофизика, 52(7), 925–930.
    [Google Scholar]
  4. Мосин, А.П., Могилатов, В.С.
    [2015] Некоторые вопросы обоснования электромагнитного каротажа методом переходных процессов. Каротажник, 12(258), 63–80.
    [Google Scholar]
  5. Ратушняк, А.Н., Теплухин, В.К.
    [2017] Теоретические и экспериментальные основы индуктивных методов исследований скважин. УрО РАН, Екатеринбург.
    [Google Scholar]
  6. Wilt, M., Zhang, P., Morea, M., Julander, D., Mock, P.
    [2001] Using Crosswell Electromagnetics to Map Water Saturation and Formation Structure at Lost Hills. SPE Western Regional Meeting, Conference Papers, SPE-68802-MS.
    [Google Scholar]
  7. Levesque, C.
    [2006] Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservoir. Middle East and Asia Reservoir Review, 7, 23–33.
    [Google Scholar]
  8. Marsala, A.F., Ruwaili, S., Shouxiang, M.M., Ali, Z, Buali, M., Donadille, J.M., Crary, S., Wilt, M.
    [2008] Crosswell Electromagnetic Tomography: from Resistivity Mapping to Interwell Fluid Distribution. International Petroleum Technology Conference, Proceedings, IPTC-12229-MS.
    [Google Scholar]
  9. Al-Ali, Z.A., Al-Buali, M.H., AlRuwaili, S., Ma, S.M., Marsala, A.F., Alumbaugh, D., DePavia, L., Levesque, C., Nalonnil, A., Zhang, P., Hulme, C., Wilt, M.
    [2009] Looking Deep into the Reservoir. Oilfield Review, 21(2), 38–47.
    [Google Scholar]
  10. Beer, R., Nalonnil, A., Thum, S., Vissapragada, B., Roberto, P., Netto, A., Zhang, P., Alumbaugh, D., Reynolds, L., McCallum, M., Maver, K.G.
    [2010] Improved Formation Imaging of the Interwell Space with Deep Reading Technologies. SPWLA 51st Annual Logging Symposium, Transactions, SPWLA-2010-14650.
    [Google Scholar]
  11. Marion, B., Safdar, M., Wilt, M., Zhang, P., Loh, F., Nalonnil, A.
    [2011] Crosswell Technologies: New Solutions for Enhanced Reservoir Surveillance. SPE Enhanced Oil Recovery Conference, Conference Papers, SPE-144271-MS.
    [Google Scholar]
  12. Marsala, A., Lyngra, S., Safdar, M., Zhang, P., Wilt, M.
    [2015] Crosswell Electromagnetic Induction between Two Widely Spaced Horizontal Wells: Coiled-tubing Conveyed Data Collection and 3D Inversion from a Carbonate Reservoir in Saudi Arabia. 2015 SEG Annual Meeting, Expanded Abstracts, SEG-2015-5891203.
    [Google Scholar]
  13. Zhang, P., Abdallah, W., Ramadhan, M., Marsala, A., Saif, S., Lyngra, S., Ma, S.
    [2017] Crosswell Electromagnetic Survey: An Effective Approach for Reservoir-scale Saturation Mapping. 2017 SEG International Exposition and Annual Meeting, Expanded Abstracts, SEG-2017-17251684.
    [Google Scholar]
  14. Могилатов, В.С., Потапов, В.В.
    [2014] Универсальное математическое обеспечение для индукционного каротажа. Каротажник, 12(246), 76–90.
    [Google Scholar]
  15. Nardi, G., Martakov, S., Nikitenko, M., Rabinovich, M.
    [2010] Evaluation of Parameter Uncertainty Utilizing Resolution Analysis in Reservoir Navigation Increases the Degree of Accuracy and Confidence in Well-bore Placement. SPWLA 51st Annual Logging Symposium, Transactions, SPWLA-2010-78038.
    [Google Scholar]
  16. Anderson, B., Chew, W.C.
    [1989] Transient Response of Some Borehole Mandrel Tools. Geophysics, 54(2), 216–224.
    [Google Scholar]
  17. Tabarovsky, L., Goldman, M., Rabinovich, M., Strack, K.
    [1996] 2.5-D Modeling in Electromagnetic Methods of Geophysics. Journal of Applied Geophysics, 35(4), 261–284.
    [Google Scholar]
  18. Onegova, E.V., Epov, M.I.
    [2011] 3D Simulation of Transient Electromagnetic Field for Geosteering Horizontal Wells. Russian Geology and Geophysics, 52(7), 725–729.
    [Google Scholar]
  19. Mosin, A.P., Mogilatov, V.S.
    [2015] Some Aspects of Electromagnetic Logging Substantiation by the Transient Electromagnetic Technique. Karotazhnik, 12(258), 63–80.
    [Google Scholar]
  20. Ratushnyak, A.N., Teplukhin, V.K.
    [2017] Theoretical and Experimental Foundations of Inductive Well Logging Techniques. UrB RAS, Ekaterinburg.
    [Google Scholar]
  21. Wilt, M., Zhang, P., Morea, M., Julander, D., Mock, P.
    [2001] Using Crosswell Electromagnetics to Map Water Saturation and Formation Structure at Lost Hills. SPE Western Regional Meeting, Conference Papers, SPE-68802-MS.
    [Google Scholar]
  22. Levesque, C.
    [2006] Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservoir. Middle East and Asia Reservoir Review, 7, 23–33.
    [Google Scholar]
  23. Marsala, A.F., Ruwaili, S., Shouxiang, M.M., Ali, Z, Buali, M., Donadille, J.M., Crary, S., Wilt, M.
    [2008] Crosswell Electromagnetic Tomography: from Resistivity Mapping to Interwell Fluid Distribution. International Petroleum Technology Conference, Proceedings, IPTC-12229-MS.
    [Google Scholar]
  24. Al-Ali, Z.A., Al-Buali, M.H., AlRuwaili, S., Ma, S.M., Marsala, A.F., Alumbaugh, D., DePavia, L., Levesque, C., Nalonnil, A., Zhang, P., Hulme, C., Wilt, M.
    [2009] Looking Deep into the Reservoir. Oilfield Review, 21(2), 38–47.
    [Google Scholar]
  25. Beer, R., Nalonnil, A., Thum, S., Vissapragada, B., Roberto, P., Netto, A., Zhang, P., Alumbaugh, D., Reynolds, L., McCallum, M., Maver, K.G.
    [2010] Improved Formation Imaging of the Interwell Space with Deep Reading Technologies. SPWLA 51st Annual Logging Symposium, Transactions, SPWLA-2010-14650.
    [Google Scholar]
  26. Marion, B., Safdar, M., Wilt, M., Zhang, P., Loh, F., Nalonnil, A.
    [2011] Crosswell Technologies: New Solutions for Enhanced Reservoir Surveillance. SPE Enhanced Oil Recovery Conference, Conference Papers, SPE-144271-MS.
    [Google Scholar]
  27. Marsala, A., Lyngra, S., Safdar, M., Zhang, P., Wilt, M.
    [2015] Crosswell Electromagnetic Induction between Two Widely Spaced Horizontal Wells: Coiled-tubing Conveyed Data Collection and 3D Inversion from a Carbonate Reservoir in Saudi Arabia. 2015 SEG Annual Meeting, Expanded Abstracts, SEG-2015-5891203.
    [Google Scholar]
  28. Zhang, P., Abdallah, W., Ramadhan, M., Marsala, A., Saif, S., Lyngra, S., Ma, S.
    [2017] Crosswell Electromagnetic Survey: An Effective Approach for Reservoir-scale Saturation Mapping. 2017 SEG International Exposition and Annual Meeting, Expanded Abstracts, SEG-2017-17251684.
    [Google Scholar]
  29. Mogilatov, V.S., Potapov, V.V.
    [2014] All-purpose Mathematical Support for Induction Logging. Karotazhnik, 12(246), 76–90.
    [Google Scholar]
  30. Nardi, G., Martakov, S., Nikitenko, M., Rabinovich, M.
    [2010] Evaluation of Parameter Uncertainty Utilizing Resolution Analysis in Reservoir Navigation Increases the Degree of Accuracy and Confidence in Well-bore Placement. SPWLA 51st Annual Logging Symposium, Transactions, SPWLA-2010-78038.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202053067
Loading
/content/papers/10.3997/2214-4609.202053067
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error