1887

Abstract

Summary

Here, we present the first results of DAS deployed in Antarctica to interrogate icequake microseismicity. Distributed Acoustic Sensing (DAS) can provide much higher density spatial sampling of an earthquake’s seismic wavefield than conventional seismometer networks, and is therefore promising for microseismicity studies generally. We first present a methodology for microseismic event detection and location using DAS. We then demonstrate the potential of DAS for discriminating source mechanisms and anisotropic path effects. To our knowledge, this is the first full waveform source mechanism inversion of a microseismic source using DAS. We also investigate the potential of DAS for ambient noise studies. In each case, we compare the performance of DAS to conventional geophones. Our results have implications for future microseismicity studies, highlighting both the promise and limitations of DAS for such applications.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202131037
2021-03-01
2024-03-29
Loading full text...

Full text loading...

References

  1. Baird, A. F., Stork, A. L., Horne, S. A., Naldrett, G., Kendall, J.-M., Wookey, J., et al.
    (2020). Characteristics of microseismic data recorded by distributed acoustic sensing systems in anisotropic media.GEOPHYSICS, 85(4), KS139–KS147. https://doi.org/10.1190/geo2019-0776.1
    [Google Scholar]
  2. Hudson, T.S.
    (2020). TomSHudson/SeisSrcInv: Initial release for publication (Version v1.0.0-beta).Zenodo. https://doi.org/http://doi.org/10.5281/zenodo.3726697
    [Google Scholar]
  3. Hudson, T. S., Brisbourne, A. M., Walter, F., Gräff, D., White, R. S., & Smith, A. M.
    (2020). Icequake Source Mechanisms for Studying Glacial Sliding.Journal of Geophysical Research: Earth Surface, 125(11). https://doi.org/10.1029/2020JF005627
    [Google Scholar]
  4. Hudson, Thomas S., Smith, J., Brisbourne, A., & White, R.
    (2019). Automated detection of basal icequakes and discrimination from surface crevassing.Annals of Glaciology, 60(79), 1–11.
    [Google Scholar]
  5. Kufner, S.-K., Brisbourne, A. M., Smith, A. M., Hudson, T. S., Murray, T., Schlegel, R., et al.
    (n.d.). Not all icequakes are created equal: Diverse bed deformation mechanisms at Rutford Ice Stream, West Antarctica, inferred from basal seismicity.Journal of Geophysical Research: Earth Surface Earth Surface. https://doi.org/10.1002/essoar.10504915.1
    [Google Scholar]
  6. Lomax, A., & Virieux, J.
    (2000). Probabilistic earthquake location in 3D and layered models.Advances in Seismic Event Location, Volume 18 of the Series Modern Approaches in Geophysics, 101–134.
    [Google Scholar]
  7. Parker, T., Shatalin, S., & Farhadiroushan, M.
    (2014). Distributed Acoustic Sensing – a new tool for seismic applications.First Break, 32(2010), 61–69. https://doi.org/10.3997/1365‑2397.2013034
    https://doi.org/https://doi.org/10.3997/1365-2397.2013034 [Google Scholar]
  8. Rignot, E., Mouginot, J., & Scheuchl, B.
    (2011). Ice Flow of the Antarctic Ice Sheet.Science, 333(6048), 1427–1430. https://doi.org/10.1126/science.1208336
    [Google Scholar]
  9. Smith, A. M.
    (2006). Microearthquakes and subglacial conditions.Geophysical Research Letters, 33(24), 1–5. https://doi.org/10.1029/2006GL028207
    [Google Scholar]
  10. Smith, E. C., Smith, A. M., White, R. S., Brisbourne, A. M., & Pritchard, H. D.
    (2015). Mapping the ice-bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity.Journal of Geophysical Research: Earth Surface, 120(9), 1881–1894. https://doi.org/10.1002/2015JF003587
    [Google Scholar]
  11. Smith, J. D., White, R. S., Avouac, J.-P., & Bourne, S.
    (2020). Probabilistic earthquake locations of induced seismicity in the Groningen region, the Netherlands.Geophysical Journal International, 222(1), 507–516. https://doi.org/10.1093/gji/ggaa179
    [Google Scholar]
  12. Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., & Fichtner, A.
    (2020). Distributed Acoustic Sensing of Microseismic Sources and Wave Propagation in Glaciated Terrain.Nature Communications, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004
    [Google Scholar]
  13. Zhu, L., & Rivera, L. A.
    (2002). Computation of dynamic and static displacement from a point source in multi-layered media.Geophysical Journal International, 148, 619–627.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202131037
Loading
/content/papers/10.3997/2214-4609.202131037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error