1887

Abstract

Summary

Reducing the carbon footprint during crude oil extraction is a growing challenge among operators and regulatory institutions. Sustainable solutions need to be implemented for reaching the net-zero production emission target by 2050. Besides the climate challenges, the industry is facing one of the worse crisis of its history. Maximizing production and reserves of existing assets in a sustainable and cost-efficient way are therefore paramount.

Polymer flooding, with more than 300 projects worldwide, is a proven and cost-efficient technique to recover more oil in a shorter timeframe; but can the technology also aid in reducing greenhouse gas emissions? This article addresses this question by comparing the GHG emissions associated with standard waterflooding operations and polymer EOR processes

Our approach is based on the determination of energy consumption related to different elements of the oil production cycle assisted by water or polymer injection. The total calculation includes water treatment, chemicals manufacturing, transport, polymer injection unit, injection pumps, artificial lift, produced fluids separation, oil heating and oilfield chemicals consumption.

GHG emissions associated with oil transport, refinery, water disposal, and gas processing were not included in the study and will simply require updating the model with more data inputs.

The emission factors of a series of industrial polymers (including partially hydrolyzed polyacrylamides, sulfonated polyacrylamides, and HT/HS polymers in both powder and emulsion forms) were calculated considering the contributions of the raw materials and energy spent during the polymerization and the conditioning processes.

The methodology was applied to different field cases available in the literature to determine the reduction of GHG emissions associated with the reduction of water cut. The results indicated that polymer flooding was able to reduce the carbon intensity of conventional oil production by a factor of 2 to 6 compared to standard waterflooding operations, thus helping save up to 80% of water use. The results are promising for an emission free future in oil and gas industry.

The model presented in this paper can complement any reservoir simulation package and can give an estimation of reduction of CO2 emissions and water consumption compared to water injection. As an illustration, the model was applied to a pilot simulation using DOE Polymer Flooding software to compare CO2 footprint of waterflooding vs polymer flooding.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202133048
2021-04-19
2024-04-19
Loading full text...

Full text loading...

References

  1. (1)Global Oil Supply and Demand Outlook; McKinsey, 2019.
    [Google Scholar]
  2. (2)Feedstocks for the Chemical Industry.Dena German Energy Agency2019.
    [Google Scholar]
  3. (3)Dupuis, G.; Nieuwerf, J.A Cost-Effective EOR Technique To Reduce Carbon Intensity With Polymer Flooding and Modular Skids.J. Pet. Technol.2020.
    [Google Scholar]
  4. (4)Pickl, M. J.The Renewable Energy Strategies of Oil Majors – From Oil to Energy?Energy Strategy Rev.2019, 26, 100370. https://doi.org/10.1016/j.esr.2019.100370.
    [Google Scholar]
  5. (5)World Energy Outlook 2020 – Analysishttps://www.iea.org/reports/world-energy-outlook-2020 (accessed Jan 22, 2021).
    [Google Scholar]
  6. (6)Tullo, A. H.Why the future of oil is in chemicals, not fuelshttps://cen.acs.org/business/petrochemicals/future-oil-chemicals-fuels/97/i8.
    [Google Scholar]
  7. (7)Dong, H.; Fang, S.; Wang, D.; Wang, J.; Liu, Z. L.; Hou, W.Review of Practical Experience & Management by Polymer Flooding at Daqing; Society of Petroleum Engineers, 2008. Vol. SPE 114342. https://doi.org/10.2118/114342-MS.
    [Google Scholar]
  8. (8)Delamaide, E.Is Chemical EOR Finally Coming of Age?; OnePetro, 2020. https://doi.org/10.2118/202276-MS.
    [Google Scholar]
  9. (9)Wang, D.; Hao, Y.; Delamaide, E.; Ye, Z.; Ha, S.; Jiang, X.Results of Two Polymer Flooding Pilots in the Central Area of Daqing Oil Field; Society of Petroleum Engineers, 1993. https://doi.org/10.2118/26401-MS.
    [Google Scholar]
  10. (10)Delamaide, E.; Corlay, P.; Demin, W.Daqing Oil Field: The Success of Two Pilots Initiates First Extension of Polymer Injection in a Giant Oil Field; Society of Petroleum Engineers, 1994. https://doi.org/10.2118/27819-MS.
    [Google Scholar]
  11. (11)Wang, D.; Zhang, J.; Meng, F.; Liu, H.; Li, L.; Han, B.; Qi, L.Commercial Test of Polymer Flooding in Daqing Oil Field Daqing Petroleum Administrative Bureau; Society of Petroleum Engineers, 1995. https://doi.org/10.2118/29902-MS.
    [Google Scholar]
  12. (12)Wang, D.; Cheng, J.; Wu, J.; Wang, G.Experiences Learned after Production of More than 300 Million Barrels of Oil by Polymer Flooding in Daqing Oil Field; Society of Petroleum Engineers, 2002. https://doi.org/10.2118/77693-MS.
    [Google Scholar]
  13. (13)Guo, H.; Dong, J.; Wang, Z.; Liu, H.; Ma, R.; Kong, D.; Wang, F.; Xin, X.; Li, Y.; She, H.2018EOR Survey in China-Part 1; Society of Petroleum Engineers, 2018. https://doi.org/10.2118/190286-MS.
    [Google Scholar]
  14. (14)Wilson, A.Pilot to Full-Field Polymer Application in One of India’s Largest Onshore Fields.J. Pet. Technol.2015, 67 (06), 114–116. https://doi.org/10.2118/0615-0114-JPT.
    [Google Scholar]
  15. (15)Batonyi, A.; Thorburn, L.; Molnar, S.A Reservoir Management Case Study of a Polymer Flood Pilot in Medicine Hat Glauconitic C Pool; Society of Petroleum Engineers, 2016. https://doi.org/10.2118/179555-MS.
    [Google Scholar]
  16. (16)Delamaide, E.Comparison of Primary, Secondary and Tertiary Polymer Flood in Heavy Oil - Field Results; Society of Petroleum Engineers, 2016. https://doi.org/10.2118/180852-MS.
    [Google Scholar]
  17. (17)Liu, J. (Zhengyu); Adegbesan, K.; Bai, J. (Jen).Suffield Area, Alberta, Canada – Caen Polymer Flood Pilot Project; OnePetro, 2012. https://doi.org/10.2118/157796-MS.
    [Google Scholar]
  18. (18)Juri, J. E.; Ruiz, A. M.; Pedersen, G.; Pagliero, P.; Blanco, H.; Eguia, V.; Vazquez, P.; Bernhardt, C.; Schein, F.; Villarroel, G.; Tosi, A.; Serrano, V.Grimbeek2: First Successful Application Polymer Flooding in Multilayer Reservoir at YPF. Interpretation of Polymer Flooding Response; Society of Petroleum Engineers, 2017. https://doi.org/10.2118/185487-MS.
    [Google Scholar]
  19. (19)Juri, J.; Ruiz, A.; Schein, F.; Serrano, V.; Thill, M.; Guillen, P.; Tosi, A.; Pacchy, M.; Soto, L.; Therisod, A.; Paura, M.; Lauro, P.; Alonso, P.Grimbeek Successful Polymer Pilot Extends to 80 Injectors in Factory-Mode Development at CGSJ Basin; European Association of Geoscientists & Engineers, 2019. Vol. 2019, pp 1–14. https://doi.org/10.3997/2214-4609.201900061.
    [Google Scholar]
  20. (20)Juri, J. E.; Ruiz, A.; Pedersen, G.; Pagliero, P.; Limeres, A.; Bernhardt, C.; Vazquez, P.; Eguia, V.; Schein, F.; Serrano, V.; Villarroel, G.; Tosi, A.; Kaminszczik, S.Grimbeek -120 Cp Oil in a Multilayer Heterogeneous Fluvial Reservoir.First Successful Application Polymer Flooding at YPF; European Association of Geoscientists & Engineers, 2017. Vol. 2017, pp 1–20. https://doi.org/10.3997/2214-4609.201700242.
    [Google Scholar]
  21. (21)Koning, E. J. L.; Mentzer, E.; Heemskerk, J.Evaluation of a Pilot Polymer Flood in the Marmul Field, Oman; OnePetro, 1988. https://doi.org/10.2118/18092-MS.
    [Google Scholar]
  22. (22)Al-Saadi, F. S.; Amri, B. A.; Nofli, S.; Van Wunnik, J.; Jaspers, H. F.; Harthi, S.; Shuaili, K.; Cherukupalli, P. K.; Chakravarthi, R.Polymer Flooding in a Large Field in South Oman - Initial Results and Future Plans; OnePetro, 2012. https://doi.org/10.2118/154665-MS.
    [Google Scholar]
  23. (23)Thakuria, C.; Al-Amri, M. S.; Al-Saqri, K. A.; Jaspers, H. F.; Al-Hashmi, K. H.; Zuhaimi, K.Performance Review of Polymer Flooding in a Major Brown Oil Field of Sultanate of Oman; OnePetro, 2013. https://doi.org/10.2118/165262-MS.
    [Google Scholar]
  24. (24)Denney, D.Polymer Flooding in a Large Field in South Oman - Results and Plans.J. Pet. Technol.2013, 65 (01), 82–85. https://doi.org/10.2118/0113-0082-JPT.
    [Google Scholar]
  25. (25)Al-Hashmi, A. R.; Divers, T.; Al-Maamari, R. S.; Favero, C.; Thomas, A.Improving Polymer Flooding Efficiency in Oman Oil Fields; OnePetro, 2016. https://doi.org/10.2118/179834-MS.
    [Google Scholar]
  26. (26)Al-Sulaimani, H.; Al-Rawahi, Z.; Quesada, C. V.; Al-Ghannami, M.; Frumau, M.; Al-Hussaini, A.; Hemink, G.; Nadeem, M.; Khattak, A.; Al-Hinai, G.; Al-Mahrooqi, M.; Al-Shidi, M.; Syed, M.Baseline Establishment for a Polymer Flood Pilot Test in an Unconsolidated Sandstone Reservoir in the South of the Sultanate of Oman; OnePetro, 2017. https://doi.org/10.2118/188408-MS.
    [Google Scholar]
  27. (27)Anand, A.; Al Sulaimani, H.; Riyami, O.; AlKindi, A.Success and Challenges in Ongoing Field Scale Polymer Flood in Sultanate of Oman - A Holistic Reservoir Simulation Case Study for Polymer Flood Performance Analysis & Prediction; Society of Petroleum Engineers, 2018. https://doi.org/10.2118/190431-MS.
    [Google Scholar]
  28. (28)Jacobs, T.Reviving Europe’s Largest Onshore Field.J. Pet. Technol.2015, 67 (03), 70–74. https://doi.org/10.2118/0315-0070-JPT.
    [Google Scholar]
  29. (29)Abirov, Z.; Abirov, R.; Mazbayev, Y.; Engels, A.; Nestyorkin, A.; Ivakhnenko, O.Case-Study of Succesful Pilot Polymer Flooding in the South Turgay Basin’s Oilfield; OnePetro, 2015. https://doi.org/10.2118/177339-MS.
    [Google Scholar]
  30. (30)Laoroongroj, A.; Gumpenberger, T.; Clemens, T.Polymer Flood Incremental Oil Recovery and Efficiency in Layered Reservoirs Including Non-Newtonian and Viscoelastic Effects; OnePetro, 2014. https://doi.org/10.2118/170657-MS.
    [Google Scholar]
  31. (31)Clemens, T.; Lüftenegger, M.; Laoroongroj, A.; Kadnar, R.; Puls, C.The Use of Tracer Data To Determine Polymer-Flooding Effects in a Heterogeneous Reservoir, 8 Torton Horizon Reservoir, Matzen Field, Austria.SPE Reserv. Eval. Eng.2016, 19 (04), 655–663. https://doi.org/10.2118/174349-PA.
    [Google Scholar]
  32. (32)Sieberer, M.; Clemens, T.; Peisker, J.; Ofori, S.Polymer Flood Field Implementation -Pattern Configuration and Horizontal versus Vertical Wells; Society of Petroleum Engineers, 2018. https://doi.org/10.2118/190233-MS.
    [Google Scholar]
  33. (33)Gumpenberger, T.; Kornberger, M.; Deckers, M.; Clemens, T.Polymer Viscosity In Porous Media And Near Wellbore Behaviour Of A Polymer Pilot In The Matzen Field, Austria; OnePetro, 2013.
    [Google Scholar]
  34. (34)Chiotoroiu, M.-M.; Peisker, J.; Clemens, T.; Thiele, M. R.Forecasting Incremental Oil Production of a Polymer-Pilot Extension in the Matzen Field Including Quantitative Uncertainty Assessment.SPE Reserv. Eval. Eng.2017, 20 (04), 0894–0905. https://doi.org/10.2118/179546-PA.
    [Google Scholar]
  35. (35)Delamaide, E.Using Horizontal Wells For Chemicals EOR: Field Cases.Georesursy Georesources2017, 19 (3), 166–175.
    [Google Scholar]
  36. (36)Bankers Petroleum Operational Update For The First Quarter 2016. Bankers Petroleum 2016.
    [Google Scholar]
  37. (37)Sarsenova, A.Simulation Study Of Improving Oil Recovery By Polymer Flooding In A Kazakhstani Field, School of Mining and Geosciences of Nazarbayev University, Nazarbayev, 2020.
    [Google Scholar]
  38. (38)Farajzadeh, R.; Kahrobaei, S. S.; Zwart, A. H. de; Boersma, D. M.Life-Cycle Production Optimization of Hydrocarbon Fields: Thermoeconomics Perspective.Sustain. Energy Fuels2019, 3 (11), 3050–3060. https://doi.org/10.1039/C9SE00085B.
    [Google Scholar]
  39. (39)Farajzadeh, R.; Zaal, C.; van den Hoek, P.; Bruining, J.Life-Cycle Assessment of Water Injection into Hydrocarbon Reservoirs Using Exergy Concept.J. Clean. Prod.2019, 235, 812–821. https://doi.org/10.1016/j.jclepro.2019.07.034.
    [Google Scholar]
  40. (40)Delamaide, E.Investigation on the Impact of Voidage Replacement Ratio and Other Parameters on the Performances of Polymer Flood in Heavy Oil Based on Field Data; OnePetro, 2017. https://doi.org/10.2118/185574-MS.
    [Google Scholar]
  41. (41)Juri, J.-E.; Ruiz, A.; Serrano, V.; Guillen, P.; Thill, M.; Kichick, L.; Alonso, P.; Lucero, A.; De Miranda, V.; Mac Donald, W.; Figueroa, E.; Robina, N.; Vera, M.; Figueroa, E.; Di Pauly, F.; Rojas, W.; Ojeda, N.A Successful 18%STOOIP 4-Injector Polymer Pilot Expands To 80 New Injectors In 6 Years Adopting A Modular Concept In Grimbeek Fluvial Reservoirs; OnePetro, 2020. https://doi.org/10.2523/IPTC-20285-MS.
    [Google Scholar]
  42. (42)Anasta, P. T.; Warner, J. C.Green Chemistry: Theory and Practice, Oxford University Press.; New York, 1998.
    [Google Scholar]
  43. (43)Carbon Footprint Country Specific Electricity Grid Greenhouse Gas Emission Factors; 2019Grid Electricity Emissions Factors v1.0; 2019.
    [Google Scholar]
  44. (44)Information CO2 Des Prestations de Transport; Guide métholodogique; Ministère de l’écologie, du Développement durable et de l’Energie: Paris, 2012.
    [Google Scholar]
  45. (45)Mallevialle, J.; Odendaal, P. E.; Wiesner, M. R.; American Water Works Association Research Foundation; Lyonnaise des Eaux; Water Research Commision of South Africa; AWWA; AWWARF; LdE; WRC.Water Treatment Membrane Processes; McGraw-Hill: New York, NY, 1996.
    [Google Scholar]
  46. (46)WEO-2015 Special Report: Energy and Climate Changehttps://webstore.iea.org/weo-2015-special-report-energy-and-climate-change.
    [Google Scholar]
  47. (47)Yuming, W.; Yanming, P.; Zhenbo, S.; Peihui, H.; Rong, L.; Ruibo, C.; Xianhua, H.The Polymer Flooding Technique Applied at High Water Cut Stage in Daqing Oilfield; OnePetro, 2013. https://doi.org/10.2118/164595-MS.
    [Google Scholar]
  48. (48)Ning, S.; Barnes, J.; Edwards, R.; Schulpen, W.; Dandekar, A.; Zhang, Y.; Cercone, D.; Ciferno, J.First Ever Polymer Flood Field Pilot to Enhance the Recovery of Heavy Oils on Alaska North Slope – Producer Responses and Operational Lessons Learned; OnePetro, 2020. https://doi.org/10.2118/201279-MS.
    [Google Scholar]
  49. (49)Alaska North Slope Field Laboratoryhttps://netl.doe.gov/node/6842.
    [Google Scholar]
  50. (50)Special Topics Reservoir Simulation Report June 2018 to May 2019; Simulation Report; 2019.
    [Google Scholar]
  51. (51)Poulsen, A.; Shook, G. M.; Jackson, A.; Ruby, N.; Charvin, K.; Dwarakanath, V.; Thach, S.; Ellis, M.Results of the UK Captain Field Interwell EOR Pilot; Society of Petroleum Engineers, 2018. https://doi.org/10.2118/190175-MS.
    [Google Scholar]
  52. (52)Long, R.Supporting Technology For Enhanced Oil Recovery: Polymer Predictive Model: Polymer Predictive Model; 2016-09–29; 1984.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202133048
Loading
/content/papers/10.3997/2214-4609.202133048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error