1887

Abstract

Summary

The aim of this study was to investigate usefulness and applicability of sapropel- and clay-containing soil conditioners for bioremediation of polluted soils with the further target to develop new sustainable soil improving products.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.2021623011
2021-09-15
2024-04-24
Loading full text...

Full text loading...

References

  1. Burlakovs, J., Hogland, W., Vincevica-Gaile, Z., Kriipsalu, M., Klavins, M., Jani, Y., Setyobudi, R.H., Bikse, J., Rud, V. and Tamm, T.
    [2020]. Environmental quality of groundwater in contaminated areas – challenges in Eastern Baltic region. In: Negm, A.M., Zelenakova, M. and Kubiak-Wójcicka, K. (eds.) Water Resources Quality and Management in Baltic Sea Countries. Springer, pp. 59–84.
    [Google Scholar]
  2. Delgado-Rodriguez, O.
    [2017]. Mapping of hydrocarbon- and scrap-metal-contaminated soil using volatile organic compounds and electromagnetic profiling methods. Near Surface Geophysics, 15(3), 312–321, DOI:10.3997/1873‑0604.2017008.
    https://doi.org/10.3997/1873-0604.2017008 [Google Scholar]
  3. Gomez-Eyles, J., Beesley, L., Moreno-Jimenez, E., Ghosh, U. and Sizmur, T.
    [2013]. The potential of biochar amendments to remediate contaminated soils. In: Ladygina, N. and Rineau, F. (eds.) Biochar and Soil Biota. CRC Press, pp. 100–133.
    [Google Scholar]
  4. Guérin, R., Bégassat, P., Benderitter, Y., David, J., Tabbagh, A. and Thiry, M.
    [2004]. Geophysical study of the industrial waste land in Mortagne-du-Nord (France) using electrical resistivity. Near Surface Geophysics, 3, 137–143, DOI: 10.3997/1873‑0604.2004011.
    https://doi.org/10.3997/1873-0604.2004011 [Google Scholar]
  5. Houben, D., Evrard, L. and Sonnet, P.
    [2013]. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457, DOI:10.1016/j.chemosphere.2013.03.055.
    https://doi.org/10.1016/j.chemosphere.2013.03.055 [Google Scholar]
  6. Kadioğlu, S. and Kadioğlu, Y.K.
    [2016]. Visualization of buried anti-tank landmines and soil pollution: Analyses using ground penetrating radar method with attributes and petrographical methods. Near Surface Geophysics, 14(2), 183–195, DOI:10.3997/1873‑0604.2016010.
    https://doi.org/10.3997/1873-0604.2016010 [Google Scholar]
  7. Liu, L., Li, W., Song, W. and Guo, M.
    [2018]. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219, DOI:10.1016/j.scitotenv.2018.03.161.
    https://doi.org/10.1016/j.scitotenv.2018.03.161 [Google Scholar]
  8. Meghraj, M. and Naidu, R.
    [2017]. Soil and brownfield bioremediation. Microbial Biotechnology, 10(5),1244–1249, DOI:10.1111/1751‑7915.12840.
    https://doi.org/10.1111/1751-7915.12840 [Google Scholar]
  9. Osiju, L.C. and Onojake, C.M.
    [2004]. Trace heavy metals associated with crude oil: A case study of Ebocha-8 oil-spill-polluted site in Niger Delta, Nigeria. Chemistry and Biodiversity, 1(11), 1708–1715, DOI:10.1002/cbdv.200490129.
    https://doi.org/10.1002/cbdv.200490129 [Google Scholar]
  10. Phytoremediation as effective clean-up approach: Its perspectives of use in practice
    [Google Scholar]
  11. Radulescu, C., Stihi, C., Popescu, I.V., Toma, L.G., Chelarescu, E.D. and Stirbescu, R.
    [2012]. Assessment of heavy metals content of crude oil contaminated soil. Journal of Science and Arts, 4(21), 459–468.
    [Google Scholar]
  12. Rajab, J.A., El-Naqa, A. and Al-Qinna, M.
    [2018]. Hydrogeophysical characterization of shallow light non-aqueous phase liquid contamination at a karst aquifer. Near Surface Geophysics, 16(6), 643–662, DOI:10.1002/nsg.12021.
    https://doi.org/10.1002/nsg.12021 [Google Scholar]
  13. Soil Ecosystem Health and Management of Contaminated Sites
    [Google Scholar]
  14. Stankevica, K. and Klavins, M.
    [2013]. Sapropel and its application possibilities. Scientific Journal of Riga Technical University, Series: Material Science and Applied Chemistry, 29(1), 109–126, DOI:10.7250/msac.2013.028.
    https://doi.org/10.7250/msac.2013.028 [Google Scholar]
  15. Vincevica-Gaile, Z., Burlakovs, J. and Stankevica, K.
    [2015]. Phytoremediation as effective clean-up approach: Its perspectives of use in practice. In: Truu, J. and Kalnenieks, U. (eds.) Soil Ecosystem Health and Management of Contaminated Sites. University of Tartu Press, pp. 83–101.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.2021623011
Loading
/content/papers/10.3997/2214-4609.2021623011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error