Full text loading...
Radio-Magnetotelluric (RMT) method is based on measurements of the electromagnetic (EM) field using military and civilian radio transmitters broadcasting in a frequency range between 10 to 1000 kHz as the source. In order to reach to higher signal to noise ratio and a deeper penetration depth, CSRMT measurements are performed using a controlled-source in a wider frequency range of 1 to 1000 kHz.
We accomplished a dense RMT and CSRMT survey over a waste-site in Cologne, Germany. Two perpendicular transmitters were set-up to obtain the full impedance tensor and the tipper elements. The data were processed and the corresponding apparent resistivity, phase and tipper were calculated. Here, we present and discuss the 2D and 3D inversion of the computed transfer functions.
In general, we image a high conductive waste body extending to a maximum depth of 15 m. The waste body indicates an internal structuring and is well confined to the former pit area. Below the waste, sandy gravel is deposited. Outside the waste the subsurface is highly resistive.
The results, are in a good agreement with former DCR results that are obtained from the same region indicating the reliability of the data acquisition, processing and inversion.