1887

Abstract

Summary

Lithuania’s southwestern region holds a geothermal anomaly with two key complexes: Parnu–Kemeri, featuring Devonian sandstone hydrothermal reservoirs with excellent flow properties (26% porosity, 2000 mD permeability) but limited temperatures (up to 45°C); and Cambrian sandstone reservoirs, offering higher temperatures (up to 96°C) but weaker petrophysical attributes (7–15% porosity, permeability <45 mD).

A study aims to assess geothermal potential for commercial use by initially conducting geological screening of sites within Cambrian sandstone aquifers and depleted hydrocarbon reservoirs. This involves analyzing petrophysical properties, well placement, and static/dynamic parameters (pressure, temperature). Promising sites are identified based on these parameters. Further, detailed numerical modeling utilizes advanced Multiphysics numerical models, constructing high-resolution 3D reservoir models using real data from Cambrian aquifers and abandoned hydrocarbon reservoirs.

The study culminates in identifying the top three sites with high potential. These sites undergo additional analysis, including uncertainty modeling of dynamic/static parameters. Probabilistic forecasting estimates geothermal energy production potential for the selected sites. This study establishes a benchmark for assessing sustainable geothermal energy potential in similar reservoirs across Lithuania, Latvia, Kaliningrad, and Poland.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202321089
2023-11-14
2024-10-11
Loading full text...

Full text loading...

References

  1. 1.Sliaupa, S. et.al., 2010. Proceedings World Geothermal Congress, Bali, Indonesia.
    [Google Scholar]
  2. 2.Rasteniene, V. et.al.2005. Proceedings World Geothermal Congress (pp. 24–29).
    [Google Scholar]
  3. 3.Adam, J.E., et.al, 1960. American association of petroleum geologists, 44, 1912–1920.
    [Google Scholar]
  4. 4.Elder, J.W., 1966. Journal of Fluids Mechanics, 24, 823–843.
    [Google Scholar]
  5. 5.Elder, J.W., 1967. Journal of Fluids Mechanics, 27, 609–6233.
    [Google Scholar]
  6. 6.Wilson, A.M., et.al., 2001. American Journal of Science, 30, 727–752.
    [Google Scholar]
  7. 7.Jones, G.D., et.al, 2004. American Journal of Science, 304, 250–284.
    [Google Scholar]
  8. 8.Jones, G.D., et.al, 2005. American association of petroleum geologists, 89, 577–601.
    [Google Scholar]
  9. 9.Pal, M. et.al., 2006, Int. J. Num. Method. Fluids., https://doi.org/10.1002/fld.1211
    [Google Scholar]
  10. 10.Pal, M. et.al., 2010, Archives Comput.Methods in Engineering, 17(2), 137–189.
    [Google Scholar]
  11. 11.Pal, M. et.al., 2014, Geological Society London, DOI: 10.1144/SP406.15.
    https://doi.org/10.1144/SP406.15 [Google Scholar]
  12. 12.Xie, Y. et.al.2017, Compt. Geo., https://doi.org/10.1007/s10596-017-9669-5
    [Google Scholar]
  13. 13.Pal, M.2021, DOI: 10.1080/10916466.2021.1908356.
    https://doi.org/10.1080/10916466.2021.1908356
  14. 14.Pal, M & Jadhav, S.2022, DOI: 10.1080/10916466.2022.2033768.
    https://doi.org/10.1080/10916466.2022.2033768
  15. 15.Pal, M.2022, DOI: 10.1080/10916466.2021.2016829.
    https://doi.org/10.1080/10916466.2021.2016829
  16. 16.Laškovas et al., 1996. Įvairiagenetinių kaupviečių išplitimo dėsningumų nustatymas sausumoje bei Baltijos jūroje, naftos telkinių prognozavimo tobulinimas.Vilnius, Lithuanian Geological Survey. Report No. 4486.
    [Google Scholar]
  17. 17.Sliaupa et al., 2010. April. Geothermal potential of hot granites of Lithuania. In Proceedings of the World Geothermal Congress.
    [Google Scholar]
/content/papers/10.3997/2214-4609.202321089
Loading
/content/papers/10.3997/2214-4609.202321089
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error