1887

Abstract

Summary

CO saturation estimation during the monitoring of a carbon-dioxide storage project using traditional inversion techniques can become an intensive task due to the processing steps and inversion workflows involved. In our work, we propose a deep-learning algorithm based on the U‐Net architecture, to develop a method for automatic prediction of the spatial distribution of CO saturation from time-lapse seismic data. We suggest using continuous wavelet transform (CWT) as feature extraction from the recorded shot gathers. CWT could provide more informative and distinguishable images. The method is tested on synthetic time-lapse data generated from the use of Gassmann fluid substitution equation to calculate the post-injection P-wave velocity model used to perform the 2D finite-difference acoustic modelling. The neural network has been trained on pairs of synthetic seismic shot gathers and corresponding CO saturation maps, along with pairs of CWT coefficient maps and CO saturation maps. The results of this work indicate the prospective utility of CWT in producing more informative images for the prediction of CO saturation maps through deep learning algorithm like U-net.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202335061
2023-11-27
2024-10-11
Loading full text...

Full text loading...

References

  1. Batzle, M., & Wang, Z. [1992]. Seismic properties of pore fluids.Geophysics, 57(11), 1396–1408. https://doi.org/10.1190/1.1443207
    [Google Scholar]
  2. Chadwick, R. A., Zweigel, P., Gregersen, U., Kirby, G. A., Holloway, S., & Johannessen, P. N. [2004]. Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea.Energy, 29(9–10), 1371–1381. https://doi.org/10.1016/j.energy.2004.03.071
    [Google Scholar]
  3. de la Varga, M., Schaaf, A., & Wellmann, F. [2019]. GemPy 1.0: open-source stochastic geological modeling and inversion.Geoscientific Model Development, 12(1), 1–32. https://doi.org/10.5194/gmd-12-1-2019
    [Google Scholar]
  4. Gassmann, F. [1951]. Elastic waves through a packing of spheres:Geophysics, 16, 673–685. https://doi.org/10.1190/1.1437718.
    [Google Scholar]
  5. Hu, Q., Grana, D., & Innanen, K. A. [2022]. Predicting the time-evolution of CO2 saturation through a combination of rock physics and full-waveform inversion. In SEG International Exposition and Annual Meeting (p. D011S182R003). SEG. https://doi.org/10.1190/image2022-3745280.1
    [Google Scholar]
  6. Kingma, D. P., & Ba, J. [2014]. Adam: A method for stochastic optimization.arXiv preprint arXiv: 1412.6980.https://doi.org/10.48550/arXiv.1412.6980
    [Google Scholar]
  7. Leong, Z. X., Zhu, T., & Sun, A. Y. [2022]. Estimating CO2 saturation maps from seismic data using deep convolutional neural networks. In Second International Meeting for Applied Geoscience & Energy, 510–514. Society of Exploration Geophysicists and American Association of Petroleum Geologists. https://doi.org/10.1190/image2022-3746727.1
    [Google Scholar]
  8. Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., … & Gorman, G J. [2019]. Devito (v3. 1.0): an embedded domain-specific language for finite differences and geophysical exploration.Geoscientific Model Development, 12(3), 1165–1187. https://doi.org/10.5194/gmd-12-1165-2019
    [Google Scholar]
  9. Mannor, S., Peleg, D., & Rubinstein, R. [2005]. The cross entropy method for classification. In Proceedings of the 22nd international conference on Machine learning, 561–568. https://doi.org/10.1145/1102351.1102422
    [Google Scholar]
  10. Meadows, M. A., & Cole, S. P. [2013]. 4D seismic modeling and CO2 pressure-saturation inversion at the Weyburn Field, Saskatchewan.International Journal of Greenhouse Gas Control, 16, S103–S117. https://doi.org/10.1016/j.ijggc.2013.01.030
    [Google Scholar]
  11. Queißer, M., & Singh, S. C. [2013]. Full waveform inversion in the time lapse mode applied to CO2 storage at Sleipner.Geophysical prospecting, 61(3), 537–555. https://doi.org/10.1111/j.1365-2478.2012.01072.x
    [Google Scholar]
  12. Ronneberger, O., Fischer, P., Brox, T. [2015]. U-Net: Convolutional Networks for Biomedical Image Segmentation.LNCS. 9351. 234–241. 10.1007/978‑3‑319‑24574‑4_28.
    https://doi.org/10.1007/978-3-319-24574-4_28 [Google Scholar]
  13. Sinha, S., Routh, P. S., Anno, P. D., & Castagna, J. P. [2005]. Spectral decomposition of seismic data with continuous-wavelet transform.Geophysics, 70(6), P19–P25. https://doi.org/10.1190/1.2127113
    [Google Scholar]
  14. Um, E. S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., … Samarasinghe, S. [2022]. Deep learning multiphysics network for imaging CO2 saturation and estimating uncertainty in geological carbon storage.Geophysical Prospecting.https://doi.org/10.1111/1365-2478.13257
    [Google Scholar]
  15. Wang, X., Gao, J., He, Y., Wang, W. [2009]. 2D seismic attributes extraction based on two‐dimensional continuous wavelet transform.SEG Technical Program Expanded Abstracts.28. 3650–3654. 10.1190/1.3255625.
    https://doi.org/10.1190/1.3255625 [Google Scholar]
  16. Yan, B., Chen, B., Harp, D. R, Jia, W., & Pawar, R J. [2022]. A robust deep learning workflow to predict multiphase flow behavior during geological CO2 sequestration injection and Post-Injection periods.Journal of Hydrology, 607, 127542. https://doi.org/10.1016/j.jhydrol.2022.127542.
    [Google Scholar]
  17. Zhang, F., Juhlin, C., Ivandic, M., & Lüth, S. [2013]. Application of seismic full waveform inversion to monitor CO2 injection: Modelling and a real data example from the Ketzin site, Germany.Geophysical Prospecting, 61, 284–299. https://doi.org/10.1111/1365-2478.12021
    [Google Scholar]
/content/papers/10.3997/2214-4609.202335061
Loading
/content/papers/10.3997/2214-4609.202335061
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error