1887
PDF

Abstract

Summary

In the geodetic industry, the requirements for accuracy and time of positioning are among the most important aspects necessary for the effective and reliable implementation of projects. In addition, the development of reference stations in Poland increases the functionality of GNSS equipment using various global satellite groups, the reception modules of which are constantly developing and providing more accurate coordinates in the spatial system. The purpose of this work is to study the accuracy of the precise positioning of fixed points using the GNSS RTK measurements method of various fully working and functioning global satellite systems using VRS (Virtual Reference Station) that sends correction data through the stream RTN4G_VRS_RTCM3.2. The analysis of accuracy is performed by a fixed criterion that determines the value of the cut-off angle, which reflects the results of practical GNSS RTK-measuring in real time for conducive (CA=10°), moderate (CA=30°) and complex (CA=45°) terrain. For testing to maintain high accuracy, only Fix type measurements are considered. From the point of view of the types of solutions obtained during the GNSS positioning, three systems showed a similar level. As a result of measurements, BeiDou, GPS and Galileo had a conducive Fix solution about 80%. GLONASS demonstrated the worst result, where the measurement of such quality is less than 50%. Nowadays the most stable is the GPS satellite system.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.2023510018
2023-10-02
2025-03-25
Loading full text...

Full text loading...

/deliver/fulltext/2214-4609/2023/geoterrace-2023/GeoTerrace-2023-018.html?itemId=/content/papers/10.3997/2214-4609.2023510018&mimeType=html&fmt=ahah

References

  1. Graszka, W., Oruba, A., Ryczywolski, M., & Wajda, S. (2013). Poradnik użytkownika systemu ASG-EUPOS.Główny Urząd Geodezji i Kartografii
    [Google Scholar]
  2. Hadaś, T., Hobiger, T., & Hodryniec, P. (2020). Considering different recent advancements in GNSS on real-time zenith troposphere estimates.GPS Solutions, 24(99), 1–14.
    [Google Scholar]
  3. Hadaś, T., Kaźmierski, K., & Sośnica, K. (2019). Performance of Galileo-only dual-frequency absolute positioning using the fully serviceable Galileo constellation.GPS Solutions, 23(108).
    [Google Scholar]
  4. Kladochnyi, B., Zablotskyi, F, & Serant, O. (2022). Analysis of seasonal changes of zenith tropospheric delay components determined by data of two pairs of aerological and GNSS stations.International Conference of Young Professionals «GeoTerrace-2022».https://doi.org/10.3997/2214-4609.2022590006
    [Google Scholar]
  5. Koc, W., & Specht, C. (2015). Zastosowanie mobilnych pomiarów satelitarnych w projektowaniu i eksploatacji dróg szynowych.Problemy Kolejnictwa - Zeszyt 166, Wyd. Instytut Kolejnictwa, Warszawa, 63–83.
    [Google Scholar]
  6. Kudas, D., Szylar, M., & Cegielska, K. (2016). Dobowy pomiar współrzędnych punktu metodą RTN GPS.Episteme, 30, 511–524.
    [Google Scholar]
  7. Piegat, T., & Bas, K. (2017). Galileo zaczyna si? liczyć.Geodeta, 03-2017, 22–24.
    [Google Scholar]
  8. Savchuk, S., Doskich, S., Gołda, P., Rurak, A. (2023). The Seasonal Variations Analysis of Permanent GNSS Station Time Series in the Central-East of Europe.Remote Sensing, 2023. 15(15), 3858https://doi.org/10.3390/rs15153858
    [Google Scholar]
  9. Vivat, A., Tretyak, K., Savchyn, I., Lano, O., & Navodych, M. (2021, October). Analysis and comparison of static and RTK measurements: case study for GNSS network of the Dnister PSPP.In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1–5).
    [Google Scholar]
  10. Vivat, A., Tretyak, K, Savchyn, I., Navodych, M., & Lano, O. (2022). Investigation of determining the accuracy of spatial vectors by the satellite method in a real time mode.Journal of Applied Geodesy, 16(4), 351–360.
    [Google Scholar]
  11. Zajdel, R., Kaźmierski, K., & Sośnica, K. (2022). Orbital artifacts in multi-GNSS Precise Point Positioning time series.Journal of Geophysical Research: Solid Earth, 127.
    [Google Scholar]
/content/papers/10.3997/2214-4609.2023510018
Loading
/content/papers/10.3997/2214-4609.2023510018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error