1887

Abstract

Summary

The paper provides an analysis of the growth rates of one of the greenhouse gases, methane, over the past 13 years, which were investigated using remote sensing data. The presented results of the content and dynamics of methane concentration in the atmosphere over Ukraine show a rapid increase in methane content since 2019. The increase of methane over 12 years on the territory of Ukraine was 0.0921 ppm. The obtained results can serve as additional information for refining the inventory of methane emissions during the preparation of the National Cadastre of Greenhouse Gases.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.2023520033
2023-11-07
2025-03-23
Loading full text...

Full text loading...

/deliver/fulltext/2214-4609/2023/monitoring'2023/Mon23-033.html?itemId=/content/papers/10.3997/2214-4609.2023520033&mimeType=html&fmt=ahah

References

  1. FengL., PalmerP.I., ZhuS., ParkerR., LiuY. (2022). Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate.Nat Commun., 13, 1378. DOI: https://doi.org/10.1038/s41467-022-28989-z
    [Google Scholar]
  2. GOSAT Data Archive Service. URL: https://data2.gosat.nies.go.jp
    [Google Scholar]
  3. Harmsen, M., van Vuuren, D.P., Bodirsky, B.L., Chateau, J., Durand-Lasserve, O., Drouet, L., Fricko, O., Fujimori, S., Gernaat, D., Hanaoka, T., Hilaire, J., Keramidas, K., Luderer, G., Moura, M., Sano, F., Smith, S., Wada, K. (2020). The role of methane in future climate strategies: mitigation potentials and climate impacts.Climatic Change.163, 1409–1425. DOI: https://doi.org/10.1007/s10584-019-02437-2
    [Google Scholar]
  4. Hope, C. (2005). The Climate Change Benefits of Reducing Methane Emissions.Climatic Change.68, 21–39. DOI: https://doi.org/10.1007/s10584-005-1052-1
    [Google Scholar]
  5. KleinenT., GromovS., SteilB. and BrovkinV. (2021). Atmospheric methane underestimated in future climate projections.Environ. Res. Lett., 16, 094006. DOI: 10.1088/1748‑9326/ac1814
    https://doi.org/10.1088/1748-9326/ac1814 [Google Scholar]
  6. KozlovaA., ElistratovaL., KostyuchenkoYu.V., ApostolovA. and ArtemenkoI. (2019). Multiparametric Modeling of Carbon Cycle in Temperate Wetlands for Regional Climate Change Analysis Using Satellite Data. In: Advances in Applied Mathematical Analysis and Applications, Mathematical and Engineering Sciences Series, ed. by MangeyRam & TadashiDohi, P.51–93, River Publishers, Denmark. https://www.riverpublishers.com/book_details.php?book_id=750
    [Google Scholar]
  7. Mar, K., Unger, C., Walderdorff, L., Butler, T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health.Environmental Science & Policy, 134, 127–136. DOI: https://doi.org/10.1016/j.envsci.2022.03.027
    [Google Scholar]
  8. On the approval of the Concept of implementation of state policy in the field of climate change for the period up to 2030. URL: https://www.kmu.gov.ua/npas/249573705
    [Google Scholar]
  9. Reay, D.S., Smith, P., Christensen, T.R., James, R.H., Clark, H. (2018). Methane and global environmental change.Annual Review of Environment and Resources, 43, 165–192. DOI: https://doi.org/10.1146/annurev-environ-102017-030154
    [Google Scholar]
  10. Thakur, S. and Solanki, H. (2022). Role of Methane in Climate Change and Options for Mitigation-A Brief Review.International Association of Biologicals and Computational Digest, 1(2), 275–281. DOI: https://doi.org/10.56588/iabcd.v1i2.80
    [Google Scholar]
  11. TymchyshynM. A., YelistratovaL. A., ApostolovA. A., RomanciucI. F. (2021). Remote detection the CO2 concentration within different land classes cover on the territory of Ukraine.GeoInformatics 2021. (11–14 May, 2021). Kyiv, Ukraine, 2021. 21046. DOI: 10.3997/2214‑4609.20215521046
    https://doi.org/10.3997/2214-4609.20215521046 [Google Scholar]
  12. ZimmermannP. H., BrenninkmeijerC. A. M., PozzerA., JöckelP., WintersteinF., ZahnA., HouwelingS. and LelieveldJ. (2020). Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations.Atmos. Chem. Phys., 20, 5787–5809. DOI: https://doi.org/10.5194/acp-20-5787-2020
    [Google Scholar]
/content/papers/10.3997/2214-4609.2023520033
Loading
/content/papers/10.3997/2214-4609.2023520033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error