1887

Abstract

Summary

In the present study, we test a nature-inspired, meta-heuristic, global search optimization algorithm to infer the 1D/2D shear wave velocity (Vs) profile from the synthetic data (using SOFI2D) and field data (across the Himalayan Frontal Thrust (HFT)) containing surface (Rayleigh) waves. We first implement the mentioned methodology on the synthetic short gather (for this velocity-depth model is known) to gain confidence on the inverted Vs profiles. For the synthetic data, we generate the dispersion image (using Phase-shift method) and extract the experimental fundamental mode dispersion curve. We then successfully implemented the Particle swarm optimization algorithm (PSO) with a linearly decreasing inertia weight variant to invert the obtained dispersion data and finally deduce the global optimal Vs profiles. Using PSO as a global search optimization algorithm we report high confidence, as the inversion result shows a good match between the true and inverted 1D Vs profiles for the synthetic data. Finally, we implement it to the field datasets acquired across the HFT at Pawalgarh in Uttarakhand, India to infer the shear wave velocity and shear modulus variation.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202375040
2023-11-07
2025-07-19
Loading full text...

Full text loading...

References

  1. 1.Ashraf, M. M., Kumar, N. S., Yusoh, R., Hazreek, Z. A. M., and Aziman, M., 2018. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground. In Journal of Physics: Conference Series (Vol. 995, No. 1, p. 012108). IOP Publishing.
    [Google Scholar]
  2. 2.Askari, R., Ferguson, R. J., and De Meersman, K., 2011. estimation of phase and group velocities for multi-modal ground roll using the ‘phase shift’ and ‘slant stack generalized S transform based’ methods.CREWES Research Report, 23, 1–11.
    [Google Scholar]
  3. 3.Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., and Abraham, A., 2011. Inertia weight strategies in particle swarm optimization. In 2011 Third world congress on nature and biologically inspired computing (pp. 633–640). IEEE.
    [Google Scholar]
  4. 4.BohlenT., De NilD., KohnD., and JetschnyS., 2015. SOFI2D – seismic modelling with finite differences 2D-elastic and viscoelastic version, Karlsruhe Institute of Technology, User Guide, Department of Physics, Geophysical Institute Germany.
    [Google Scholar]
  5. 5.Foti, S., Parolai, S., Albarello, D., and Picozzi, M., 2011. application of surface-wave methods for seismic site characterization.Surveys in Geophysics, 32(6), 777–825.
    [Google Scholar]
  6. 6.Heris, M. K., 2015. Particle Swarm Optimization in MATLAB — URL: https://yarpiz.com/50/ypea102-particle-swarm-optimization), Yarpiz.
    [Google Scholar]
  7. 7.Karray, M., 2010. Shear wave velocity in geotechnical engineering. In Proceedings of the International Conference on Geotechnical Engineering, Hammamet (pp. 20–23).
    [Google Scholar]
  8. 8.Kausel, E., and Roësset, J. M., 1981. Stiffness matrices for layered soils.Bulletin of the seismological Society of America, 71(6), 1743–1761.
    [Google Scholar]
  9. 9.Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE.
    [Google Scholar]
  10. 10.Kotecha, P., 2020. Computer Aided Applied Single Objective Optimization – Video URL: https://www.youtube.com/watch?v=UKx76ThMXDM&t=3492s
    [Google Scholar]
  11. 11.Long, M., Donohue, S., & O’Connor, P., 2008. Rapid, cost effective and accurate determination of in situ stiffness using MASW at Bothkennar.Ground Engineering, 43–46.
    [Google Scholar]
  12. 12.Mirjalili, S., 2018. Udemy courses: Optimization problems and algorithms, URL: https://www.udemy.com/course/optimisation/.
    [Google Scholar]
  13. 13.Mohamed, A. M., Abu El Ata, A. S. A., Abdel Azim, F., and Taha, M. A., 2013. Site-specific shear wave velocity investigation for geotechnical engineering applications using seismic refraction and 2D multichannel analysis of surface waves.NRIAG Journal of Astronomy and Geophysics, 2(1), 88–101.
    [Google Scholar]
  14. 14.Olafsdottir, E. A., Erlingsson, S., and Bessason, B., 2016. Effects of measurement profile configuration on estimation of stiffness profiles of loose post glacial sites using MASW. In Proceedings of the 17th Nordic geotechnical meeting, Reykjavik, Iceland (pp. 25–28).
    [Google Scholar]
  15. 15.Olafsdottir, E. A., Erlingsson, S., and Bessason, B., 2018. Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils.Canadian Geotechnical Journal, 55(2), 217–233. https://uni.hi.is/eao4/
    [Google Scholar]
  16. 16.Olafsdottir, E. A., Erlingsson, S., and Bessason, B., 2020. Open-Source MASW Inversion Tool Aimed at Shear Wave Velocity Profiling for Soil Site Explorations.Geosciences, 10(8), 322.
    [Google Scholar]
  17. 17.Park, C. B., Miller, R. D., and Xia, J., 1998a. Ground roll as a tool to image near-surface anomaly. InSEG Technical Program Expanded Abstracts 1998 (pp. 874–877). Society of Exploration Geophysicists. and 1998b, Imaging dispersion curves of surface waves on multichannel record. In SEG Technical Program Expanded Abstracts 1998 (pp. 1377–1380). Society of Exploration Geophysicists.
    [Google Scholar]
  18. 18.Park, C. B., Miller, R. D., and Xia, J., 1999. Multichannel analysis of surface waves.Geophysics,64(3), 800–808.
    [Google Scholar]
  19. 19.Park, C. B., 2011. Imaging dispersion of MASW data—Full vs. selective offset scheme.Journal of Environmental and Engineering Geophysics, 16(1), 13–23.
    [Google Scholar]
  20. 20.Poormirzaee, R., and Moghadam, R. H., 2014. Using Particle Swarm Optimization Method to Invert Active Surface Waves. In International Conference on Swarm Intelligence Based Optimization (pp. 26–34). Springer, Cham.
    [Google Scholar]
  21. 21.Song, X., Tang, L., Lv, X., Fang, H., and Gu, H., 2012. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves.Journal of Applied Geophysics, 84, 1–13.
    [Google Scholar]
  22. 22.Song, X., Tang, L., Zhao, S., Zhang, X., Li, L., Huang, J., and Cai, W., 2015. Grey wolf optimizer for parameter estimation in surface waves.Soil Dynamics and Earthquake Engineering, 75, 147–157.
    [Google Scholar]
  23. 23.Thitimakorn, T., and Channoo, S., 2012. Shear wave velocity of soils and NEHRP site classification map of Chiangrai city, northern Thailand.Electronic Journal of Geotechnical Engineering, 17(U), 2891–904.
    [Google Scholar]
  24. 24.Tsuji, T., Johansen, T. A., Ruud, B. O., Ikeda, T., and Matsuoka, T., 2012. Surface-wave analysis for identifying unfrozen zones in subglacial sediments S-wave velocity in subglacial sediment.Geophysics, 77(3), EN17–EN27.
    [Google Scholar]
  25. 25.Ugwu, S. A., Nwankwo, C. N., and Sule, J. O., 2018. Characterization of ground rolls in the North West of Niger Delta Nigeria, West Africa.Egyptian journal of petroleum, 27(4), 541–552.
    [Google Scholar]
  26. 26.Verma, S.N., and Ghosal, D., 2021. High-resolution velocity structure across HFT, Kumaon Himalaya using controlled- source seismic data sets. In First International Meeting for Applied Geoscience & Energy (pp. 3424–3428). Society of Exploration Geophysicists
    [Google Scholar]
  27. 27.Xia, J., Miller, R. D., and Park, C. B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves.Geophysics, 64(3), 691–700.
    [Google Scholar]
  28. 28.Xia, J., Miller, R. D., Park, C. B., and Tian, G., 2003. inversion of high frequency surface waves with fundamental and higher modes.Journal of Applied Geophysics, 52(1), 45–57.
    [Google Scholar]
/content/papers/10.3997/2214-4609.202375040
Loading
/content/papers/10.3997/2214-4609.202375040
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error