1887

Abstract

Summary

Caprock integrity is important for CO2 storage to prevent leaks and failures. Accurate and systematic assessment of the caprock’s sealing ability, capacity, and shape under increasing confining pressures can identify risk factors and help mitigate leakage risk effectively. Laboratory measurements of core samples provide critical data on the responses of the caprock to pressure and changes in mechanical properties. Parameters from various tests and measurements namely, Triaxial compression, Ultrasonic velocity, In-situ stress deformation, and Mohr-Coulomb Failure envelope allowed rapid analysis of caprock parameters. Evaluation of caprock conditions using 21 collected records on 17 features using Random Forest algorithm for feature selection was attempted in this study. Caprock potential prediction was done using Bagging SVM classifiers with authentic labels, based on Low to High risk entities. Uncertainty estimation evaluated the outcomes and validated the predictions.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202379024
2023-11-21
2025-04-17
Loading full text...

Full text loading...

References

  1. •Bruno, M. S., Lao, K., Diessl, J., Childers, B., Xiang, J., White, N., & van der Veer, E. (2014). Development of Improved caprock Integrity Analysis and Risk Assessment Techniques. In Energy Procedia (Vol. 63). Elsevier BV. https://doi.org/10.1016/j.egypro.2014.11.503
    [Google Scholar]
  2. •Chen, R. C., Dewi, C., Huang, S. W., & Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods.Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00327-4
    [Google Scholar]
  3. •Espinoza, D. N., & Santamarina, J. C. (2017). CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage.International Journal of Greenhouse Gas Control, 66(June), 218–229. https://doi.org/10.1016/j.ijggc.2017.09.019
    [Google Scholar]
  4. •Ferrill, D. A., Morris, A. P., McGinnis, R. N., Smart, K. J., Wigginton, S. S., & Hill, N. J. (2017). Mechanical stratigraphy and normal faulting.Journal of Structural Geology, 94, 275–302. https://doi.org/10.1016/jjsg.2016.11.010
    [Google Scholar]
  5. •Hemme, C., & van Berk, W. (2017). Change in cap rock porosity triggered by pressure and temperature dependent CO2-water-rock interactions in CO2 storage systems.Petroleum, 3(1), 96–108. https://doi.org/10.1016/j.petlm.2016.11.010
    [Google Scholar]
  6. •Horsrud, P. (2001). Estimating mechanical properties of shale from empirical correlations.SPE Drilling and Completion, 16(2), 68–73. https://doi.org/10.2118/56017-PA
    [Google Scholar]
  7. •JasonBrownlee2021, How to Develop a Bagging Ensemble with Python, Machine Learning Mastery, accessed 8 September 2023, https://machinelearningmastery.com/bagging-ensemble-with-python/
    [Google Scholar]
  8. •Newell, P., Martinez, M. J., & Eichhubl, P. (2017). Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage.Journal of Petroleum Science and Engineering, 155, 100–108. https://doi.org/10.1016/j.petrol.2016.07.032
    [Google Scholar]
  9. •Noori, R., Yeh, H., Der Abbasi, M., Kachoosangi, F. T., & Moazami, S. (2015). Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand.Journal of Hydrology, 527, 833–843. https://doi.org/10.1016/jjhydrol.2015.05.046
    [Google Scholar]
  10. •Raheli, B., Aalami, M. T., El-Shafie, A., Ghorbani, M. A., & Deo, R. C. (2017). Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River.Environmental Earth Sciences, 76(14). https://doi.org/10.1007/s12665-017-6842-z
    [Google Scholar]
  11. •Rahman, M. J. (2022). Seal, and overburden rock characterization of potential CO2 storage sites in the northern North Sea.
    [Google Scholar]
  12. •Rahman, M. J., Choi, J. C., Fawad, M., & Mondol, N. H. (2021). Probabilistic analysis of Vette fault stability in potential CO2 storage site Smeaheia, offshore Norway.International Journal of Greenhouse Gas Control, 108(November 2020), 103315. https://doi.org/10.1016/j.ijggc.2021.103315
    [Google Scholar]
  13. •Rahman, M. J., Fawad, M., & Mondol, N. H. (2021). Reservoir fluid effect on caprock properties in the Horda Platform area, northern North Sea.SSRN Electronic Journal, March.https://doi.org/10.2139/ssrn.3812432
    [Google Scholar]
  14. •Ravi Ganesh, P., Kelley, M., Tamrakar, S., Hill, B., Schuetter, J., Rodriguez Tribaldos, V., & Omosebi, O. (2022). Machine Learning-Based, Near Real-time Leakage Detection for Caprock Integrity Monitoring using Distributed Acoustic Sensing (DAS) Data from Carbon Capture and Sequestration (CCS) Operations.SSRN Electronic Journal, October, 1–12. https://doi.org/10.2139/ssrn.4281129
    [Google Scholar]
  15. •Raza, A., Rezaee, R., Gholami, R., Bing, C. H., Nagarajan, R., & Hamid, M. A. (2016). A screening criterion for selection of suitable CO2 storage sites.Journal of Natural Gas Science and Engineering, 28, 317–327. https://doi.org/10.1016/jjngse.2015.11.053
    [Google Scholar]
  16. •Sadhukhan, S., Gouze, P., & Dutta, T. (2012). Porosity and permeability changes in sedimentary rocks induced by injection of reactive fluid: A simulation model.Journal of Hydrology, 450–451, 134–139. https://doi.org/10.1016/jjhydrol.2012.05.024
    [Google Scholar]
  17. •Wang, J. G., Ju, Y., Gao, F., & Liu, J. (2016). A simple approach for the estimation of CO2 penetration depth into a caprock layer.Journal of Rock Mechanics and Geotechnical Engineering, 8(1), 75–86. https://doi.org/10.1016/jjrmge.2015.10.002
    [Google Scholar]
/content/papers/10.3997/2214-4609.202379024
Loading
/content/papers/10.3997/2214-4609.202379024
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error