1887

Abstract

Summary

The purpose of this project is to evaluate the energy potential of the mouth of the Dique channel in the bay of Cartagena to meet the energy demand and analyze its impact on the town of Pasacaballos, evaluating through hydrodynamic models, the behavior of the salinity concentration and saline gradient in the bay of Cartagena in relation to the discharge behavior of the flow, magnitude and direction of the wind, sea level variation and bathymetry, in addition to a meteorological estimation over time. Another aspect to be evaluated is the chemical analysis of the water at the mouth, to determine salinity, temperature and turbidity, as well as possible contaminants that may affect the osmosis membrane. The methodological development will allow concluding the feasibility of using sea energy by saline gradient to meet the energy demand in the township of Pasacaballos, from the results obtained, it will be concluded with the construction and analysis of the hydrodynamic model, which allows understanding the spatiotemporal changes of the physical processes observed in the field data and comparing them in relation to the results obtained in other mouths of Colombia [ ].

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202383001
2023-10-24
2025-07-14
Loading full text...

Full text loading...

References

  1. [1]Alvarez-Silva, O., & Osorio, A. F. (2015). Salinity gradient energy potential in Colombia considering site specific constraints.Renewable Energy, 74, 737–748. https://doi.org/10.1016/j.renene.2014.08.074
    [Google Scholar]
  2. [2]Thorsen, T., & Holt, T. (2009). The potential for power production from salinity gradients by pressure retarded osmosis.Journal of Membrane Science, 335(1–2), 103–110. https://doi.org/10.1016/j.memsci.2009.03.003
    [Google Scholar]
  3. [3]Spillman, C. M., Imberger, J., Hamilton, D. P., Hipsey, M. R., & Romero, J. R. (2007). Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea.Journal of Marine Systems: Journal of the European Association of Marine Sciences and Techniques, 68(1–2), 167–200. https://doi.org/10.1016/j.jmarsys.2006.11.006
    [Google Scholar]
  4. [4]Skilhagen, S. E., Dugstad, J. E., & Aaberg, R. J. (2008). Osmotic power — power production based on the osmotic pressure difference between waters with varying salt gradients.Desalination, 220(1–3), 476–482. https://doi.org/10.1016/j.desal.2007.02.045
    [Google Scholar]
  5. [5]Umgiesser, G., Ferrarin, C., Bajo, M., Bellafiore, D., Cucco, A., De Pascalis, F., Ghezzo, M., McKiver, W., & Arpaia, L. (2022). Hydrodynamic modelling in marginal and coastal sea— The case of the Adriatic Sea as a permanent laboratory for numerical approach.OceanMModelling, 179(102123), 102123. https://doi.org/10.1016/j.ocemod.2022.102123
    [Google Scholar]
  6. [6]Bellafiore, D., & Umgiesser, G. (2010). Hydrodynamic coastal processes in the North Adriatic investigated with a 3D finite element model.Ocean Dynamics, 60(2), 255–273. https://doi.org/10.1007/s10236-009-0254-x
    [Google Scholar]
  7. [7]Nijmeijer, K., & Metz, S. (2010). Chapter 5 salinity gradient energy.En Sustainable Water for the Future: Water Recycling versus Desalination (pp. 95–139). Elsevier.
    [Google Scholar]
  8. [8]Alvarez-Silva, O., Osorio, A., Ortega, S., & Agudelo-Restrepo, P. (2011). Estimation of the electric power potential using Pressure Retarded Osmosis in the Leon River’s mouth: A first step for the harnessing of saline gradients in Colombia.OCEANS 2011 IEEE - Spain.
    [Google Scholar]
  9. [9]Alvarez-Silva, O. A., Osorio, A. F., & Winter, C. (2016). Practical global salinity gradient energy potential.Renewable and Sustainable Energy Reviews, 60, 1387–1395. https://doi.org/10.1016/j.rser.2016.03.021
    [Google Scholar]
  10. [10]Poveda, G., Waylen, P. R., & Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica.Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031
    [Google Scholar]
  11. [11]Jia, Z., Wang, B., Song, S., & Fan, Y. (2014). Blue energy: Current technologies for sustainable power generation from water salinity gradient.Renewable and Sustainable Energy Reviews, 31, 91–100. https://doi.org/10.1016/j.rser.2013.11.049
    [Google Scholar]
  12. [12]Sharma, M., Das, P. P., Chakraborty, A., & Purkait, M. K. (2022). Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review.Sustainable Energy Technologies and Assessments, 49(101687), 101687. https://doi.org/10.1016/j.seta.2021.101687
    [Google Scholar]
  13. [13]Rendón, Q., Agudelo, L. A., Hernández, Q., Gallo, C., Arias, O., & Completo, N. (s/f). Gestión y Ambiente. Redalyc.org. Recuperado el 20 de octubre de 2023, de https://www.redalyc.org/pdf/1694/169419996004.pdf
    [Google Scholar]
  14. [14]Salamanca, J. M., Álvarez-Silva, O., & Tadeo, F. (2019). Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data.Energy (Oxford, England), 180, 548–555. https://doi.org/10.1016/j.energy.2019.05.048
    [Google Scholar]
  15. [15]Alvarez-Silva, Oscar, Winter, C., & Osorio, A. F. (2014). Salinity gradient energy at river mouths.Environmental Science & Technology Letters, 1(10), 410–415. https://doi.org/10.1021/ez500239n
    [Google Scholar]
  16. [16]Yip, N. Y., Brogioli, D., Hamelers, H. V. M., & Nijmeijer, K. (2016). Salinity gradients for sustainable energy: Primer, progress, and prospects.Environmental Science & Technology, 50(22), 12072–12094. https://doi.org/10.1021/acs.est.6b03448
    [Google Scholar]
  17. [17]Awati, A., Zhou, S., Shi, T., Zeng, J., Yang, R., He, Y., Zhang, X., Zeng, H., Zhu, D., Cao, T., Xie, L., Liu, M., & Kong, B. (2023). Interfacial super-assembly of intertwined nanofibers toward hybrid nanochannels for synergistic salinity gradient power conversion.ACS Applied Materials & Interfaces, 15(22), 27075–27088. https://doi.org/10.1021/acsami.3c03464
    [Google Scholar]
  18. [18]Balzer, C., Qing, L., & Wang, Z.-G. (2021). Preferential ion adsorption in blue energy applications.ACS Sustainable Chemistry & Engineering, 9(28), 9230–9239. https://doi.org/10.1021/acssuschemeng.1c01326
    [Google Scholar]
  19. [19]Alvarez-Silva, Oscar, Maturana, A. Y., Pacheco-Bustos, C. A., & Osorio, A. F. (2019). Effects of water pretreatment on the extractable salinity gradient energy at river mouths: the case of Magdalena River, Caribbean Sea.Journal of Ocean Engineering and Marine Energy, 5(3), 227–240. https://doi.org/10.1007/s40722-019-00141-y
    [Google Scholar]
  20. [20]Silva, O. Á., Gómez-Giraldo, A., & Toro, F. M. (s/f). IAHR AIIH XXIV CONGRESO LATINOAMERICANO DE HIDRÁULICA PUNTA DEL ESTE, URUGUAY, NOVIEMBRE 2010 CALIBRACIÓN Y VALIDACIÓN DE UN MODELO HIDRODINÁMICO PARA EL DISEÑO DE LA DESEMBOCADURA DEL RÍO LEÓN. Edu.co. Recuperado el 20 de octubre de2023, de https://repositorio.unal.edu.co/bitstream/handle/unal/8029/DA_257.pdf?sequence=1&isAllowed=y
    [Google Scholar]
  21. [21]Álvarez, O. A. (s/f). Modelación morfodinámica de desembocaduras a escala intra-anual. Edu.co. Recuperado el 20 de octubre de2023, de https://repositorio.unal.edu.co/bitstream/handle/unal/8098/1017134023-2011.pdf?sequence=1&isAllowed=y
    [Google Scholar]
  22. [22]The ocean conference, 5-9 June, 2017 - united nations, New York. (s/f). Recuperado el 20 de octubre de 2023, de https://www.un.org/en/conf/ocean/
    [Google Scholar]
  23. [23]Informes de Avance Generación y Transmisión. (s/f). Gov.co. Recuperado el 20 de octubre de2023, de https://www1.upme.gov.co/PromocionSector/Paginas/Informes-Avance-Generacion-Transmision.aspx
    [Google Scholar]
  24. [24]Palacio Tobón, C. A., García Rentería, F. F., & García Rentería, U. (2010). Calibración de un modelo hidrodinámico 2D para la bahía de Cartagena. Dyna.https://bibliotecadigital.udea.edu.co/handle/10495/7993
    [Google Scholar]
  25. [27]Hodges, B. R. (2014). Hydrodynamical Modeling. En Reference Module in Earth Systems and Environmental Sciences.Elsevier.
    [Google Scholar]
/content/papers/10.3997/2214-4609.202383001
Loading
/content/papers/10.3997/2214-4609.202383001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error