1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

Permo‐Triassic and Middle Jurassic‐Early Cretaceous crustal extension in northern North Sea rift.

, Abstract

In regions experiencing multiple phases of extension, rift‐related strain can vary along and across the basin during and between each phase, and the location of maximum extension can differ between the rift phase. Despite having a general understanding of multiphase rift kinematics, it remains unclear why the rift axis migrates between extension episodes. The role pre‐existing structures play in influencing fault and basin geometries during later rifting events is also poorly understood. We study the Stord Basin, northern North Sea, a location characterised by strain migration between two rift episodes. To reveal and quantify the rift kinematics, we interpreted a dense grid of 2D seismic reflection profiles, produced time‐structure and isochore (thickness) maps, collected quantitative fault kinematic data and calculated the amount of extension (‐factor). Our results show that the locations of basin‐bounding fault systems were controlled by pre‐existing crustal‐scale shear zones. Within the basin, Permo‐Triassic Rift Phase 1 (RP1) faults mainly developed orthogonal to the E‐W extension direction. Rift faults control the locus of syn‐RP1 deposition, whilst during the inter‐rift stage, areas of clastic wedge progradation are more important in controlling sediment thickness trends. The calculated amount of RP1 extension (‐factor) for the Stord Basin is up to  = 1.55 (±10%, 55% extension). During the subsequent Middle Jurassic‐Early Cretaceous Rift Phase 2 (RP2), however, strain localised to the west along the present axis of the South Viking Graben, with the Stord Basin being almost completely abandoned. Rift axis migration during RP2 is interpreted to be related to changes in lithospheric strength profile, possibly related to the ultraslow extension (<1 mm/year during RP1), the long period of tectonic quiescence (ca. 50 myr) between RP1 and RP2 and possible underplating. Our results highlight the very heterogeneous nature of temporal and lateral strain migration during and between extension phases within a single rift basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12522
2021-03-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12522.html?itemId=/content/journals/10.1111/bre.12522&mimeType=html&fmt=ahah

References

  1. Badley, M. E., Egeberg, T., & Nipen, O. (1984). Development of rift basins illustrated by the structural evolution of the Oseberg feature, Block 30/6, offshore Norway. Journal of the Geological Society, 141(4), 639. https://doi.org/10.1144/gsjgs.141.4.0639
    [Google Scholar]
  2. Badley, M. E., Price, J. D., Rambech Dahl, C., & Agdestein, T. (1988). The structural evolution of the northern Viking Graben and its bearing upon extensional modes of basin formation. Journal of the Geological Society, 145(3), 455–472. https://doi.org/10.1144/gsjgs.145.3.0455
    [Google Scholar]
  3. Bell, R. E., Jackson, C.‐A.‐L., Whipp, P. S., & Clements, B. (2014). Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics, 33(10), 1936–1963. https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  4. Bertotti, G., Ter Voorde, M., Cloetingh, S., & Picotti, V. (1997). Thermomechanical evolution of the South Alpine rifted margin (North Italy): Constraints on the strength of passive continental margins. Earth and Planetary Science Letters, 146(1), 181–193. https://doi.org/10.1016/S0012‐821X(96)00214‐2
    [Google Scholar]
  5. Bott, M. H. P., Day, A. A., & Masson‐Smith, D. (1958). The geological interpretation of gravity and magnetic surveys in Devon and Cornwall. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 251(992), 161–191. https://doi.org/10.1098/rsta.1958.0013
    [Google Scholar]
  6. Bransden, P. J. E., Burges, P., Durham, M. J., & Hall, J. G. (1999). Evidence for multi‐phase rifting in the North Falklands Basin. Geological Society, London, Special Publications, 153(1), 425. https://doi.org/10.1144/GSL.SP.1999.153.01.26
    [Google Scholar]
  7. Braun, J. (1992). Postextensional mantle healing and episodic extension in the Canning Basin. Journal of Geophysical Research, 97(B6), 8927–8936. https://doi.org/10.1029/92JB00584
    [Google Scholar]
  8. Brune, S., Heine, C., Pérez‐Gussinyé, M., & Sobolev, S. V. (2014). Rift migration explains continental margin asymmetry and crustal hyper‐extension. Nature Communications, 5(1), 4014. https://doi.org/10.1038/ncomms5014
    [Google Scholar]
  9. Castaing, C. (1991). Post‐Pan‐African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems. Tectonophysics, 191(1), 55–73. https://doi.org/10.1016/0040‐1951(91)90232‐H
    [Google Scholar]
  10. Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (2003). The growth and propagation of synsedimentary faults. Journal of Structural Geology, 25(4), 633–648. https://doi.org/10.1016/S0191‐8141(02)00054‐8
    [Google Scholar]
  11. Christiansson, P., Faleide, J. I., & Berge, A. M. (2000). Crustal structure in the northern North Sea: An integrated geophysical study. Geological Society, London, Special Publications, 167(1), 15. https://doi.org/10.1144/GSL.SP.2000.167.01.02
    [Google Scholar]
  12. Claringbould, J. S., Bell, R. E., Jackson, C.‐A.‐L., Gawthorpe, R. L., & Odinsen, T. (2017). Pre‐existing normal faults have limited control on the rift geometry of the northern North Sea. Earth and Planetary Science Letters, 475, 190–206. https://doi.org/10.1016/j.epsl.2017.07.014
    [Google Scholar]
  13. Collanega, L., Siuda, K., A.‐L. Jackson, C., Bell, R. E., Coleman, A. J., Lenhart, A., Magee, C., & Breda, A. (2019). Normal fault growth influenced by basement fabrics: The importance of preferential nucleation from pre‐existing structures. Basin Research, 31(4), 659–687. https://doi.org/10.1111/bre.12327
    [Google Scholar]
  14. de Castro, D. L., de Oliveira, D. C., Branco, G. C., & Mariano, R. (2007). On the tectonics of the Neocomian Rio do Peixe Rift Basin, NE Brazil: Lessons from gravity, magnetics, and radiometric data. Journal of South American Earth Sciences, 24(2), 184–202. https://doi.org/10.1016/j.jsames.2007.04.001
    [Google Scholar]
  15. Deng, C., Fossen, H., Gawthorpe, R. L., Rotevatn, A., Jackson, C.‐A.‐L., & Fazlikhani, H. (2017). Influence of fault reactivation during multiphase rifting: The Oseberg area, northern North Sea rift. Marine and Petroleum Geology, 86, 1252–1272. https://doi.org/10.1016/j.marpetgeo.2017.07.025
    [Google Scholar]
  16. Deng, C., Gawthorpe, R. L., Finch, E., & Fossen, H. (2017). Influence of a pre‐existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105, 44–61. https://doi.org/10.1016/j.jsg.2017.11.005
    [Google Scholar]
  17. Duffy, O. B., Bell, R. E., Jackson, C.‐A.‐L., Gawthorpe, R. L., & Whipp, P. S. (2015). Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea. Journal of Structural Geology, 80, 99–119. https://doi.org/10.1016/j.jsg.2015.08.015
    [Google Scholar]
  18. Færseth, R. B. (1996). Interaction of Permo‐Triassic and Jurassic extensional fault‐blocks during the development of the northern North Sea. Journal of the Geological Society, 153(6), 931. https://doi.org/10.1144/gsjgs.153.6.0931
    [Google Scholar]
  19. Færseth, R. B., Gabrielsen, R. H., & Hurich, C. A. (1995). Influence of basement in structuring of the North Sea basin, offshore southwest Norway. Norwegian Journal of Geology, 75, 105–119.
    [Google Scholar]
  20. Færseth, R. B., Macintyre, R. M., & Naterstad, J. (1976). Mesozoic alkaline dykes in the Sunnhordland region, western Norway: Ages, geochemistry and regional significance. Lithos, 9(4), 331–345. https://doi.org/10.1016/0024‐4937(76)90023‐2
    [Google Scholar]
  21. Fazlikhani, H., & Back, S. (2015). The influence of differential sedimentary loading and compaction on the development of a deltaic rollover. Marine and Petroleum Geology, 59, 136–149. https://doi.org/10.1016/j.marpetgeo.2014.08.005
    [Google Scholar]
  22. Fazlikhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., & Bell, R. E. (2017). Basement structure and its influence on the structural configuration of the northern North Sea rift. Tectonics, 36(6), 1151–1177. https://doi.org/10.1002/2017TC004514
    [Google Scholar]
  23. Fossen, H. (1992). The role of extensional tectonics in the Caledonides of south Norway. Journal of Structural Geology, 14(8), 1033–1046. https://doi.org/10.1016/0191‐8141(92)90034‐T
    [Google Scholar]
  24. Fossen, H., & Dunlap, W. J. (1999). On the age and tectonic significance of Permo‐Triassic dikes in the Bergen‐Sunnhordland region, southwestern Norway. Norsk Geologisk Tidsskrift, 79(3), 169–178. https://doi.org/10.1080/002919699433807
    [Google Scholar]
  25. Fossen, H., Fazlikhani, H., Faleide, J. I., Ksienzyk, A. K., & Dunlap, W. J. (2016). Post‐Caledonian extension in the West Norway–northern North Sea region: The role of structural inheritance. Geological Society, London, Special Publications, 439(1), 465. https://doi.org/10.1144/SP439.6
    [Google Scholar]
  26. Fossen, H., & Hurich, C. A. (2005). The Hardangerfjord Shear Zone in SW Norway and the North Sea: A large‐scale low‐angle shear zone in the Caledonian crust. Journal of the Geological Society, 162(4), 675. https://doi.org/10.1144/0016‐764904‐136
    [Google Scholar]
  27. Foucher, J.‐P., Le Pichon, X., & Sibuet, J. C. (1982). The ocean‐continent transition in the uniform lithospheric stretching model: role of partial melting in the mantle. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 305(1489), 27–43.
    [Google Scholar]
  28. Gabrielsen, R. H., Færseth, R. B., Steel, R. J., Idil, S., & Kløvjan, O. S. (1990). Architectural styles of basin fill in the northern Viking Graben. In Tectonic evolution of the North Sea Rifts (pp. 158–179).
    [Google Scholar]
  29. Gabrielsen, R. H., Kyrkjebø, R., Faleide, J. I., Fjeldskaar, W., & Kjennerud, T. (2001). The Cretaceous post‐rift basin configuration of the northern North Sea. Petroleum Geoscience, 7(2), 137–154. https://doi.org/10.1144/petgeo.7.2.137
    [Google Scholar]
  30. Gabrielsen, R. H., Odinsen, T., & Grunnaleite, I. (1999). Structuring of the Northern Viking Graben and the Møre Basin; The influence of basement structural grain, and the particular role of the Møre‐Trøndelag Fault Complex. Marine and Petroleum Geology, 16(5), 443–465. https://doi.org/10.1016/S0264‐8172(99)00006‐9
    [Google Scholar]
  31. Gontijo‐Pascutti, A., Bezerra, F. H. R., La Terra, E., & Almeida, J. C. H. (2010). Brittle reactivation of mylonitic fabric and the origin of the Cenozoic Rio Santana Graben, southeastern Brazil. Journal of South American Earth Sciences, 29(2), 522–536. https://doi.org/10.1016/j.jsames.2009.06.007
    [Google Scholar]
  32. Heeremans, M., & Faleide, J. I. (2004). Late Carboniferous‐Permian tectonics and magmatic activity in the Skagerrak, Kattegat and the North Sea. Geological Society, London, Special Publications, 223(1), 157. https://doi.org/10.1144/GSL.SP.2004.223.01.07
    [Google Scholar]
  33. Heilman, E., Kolawole, F., Atekwana, E. A., & Mayle, M. (2019). Controls of basement fabric on the linkage of rift segments. Tectonics, 38(4), 1337–1366. https://doi.org/10.1029/2018TC005362
    [Google Scholar]
  34. Howell, L., Egan, S., Leslie, G., & Clarke, S. (2019). Structural and geodynamic modelling of the influence of granite bodies during lithospheric extension: Application to the Carboniferous basins of northern England. Tectonophysics, 755, 47–63. https://doi.org/10.1016/j.tecto.2019.02.008
    [Google Scholar]
  35. Huismans, R., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473(7345), 74–78. https://doi.org/10.1038/nature09988
    [Google Scholar]
  36. Jackson, C.‐A.‐L., & Lewis, M. M. (2013). Physiography of the NE margin of the Permian Salt Basin: New insights from 3D seismic reflection data. Journal of the Geological Society, 170(6), 857. https://doi.org/10.1144/jgs2013‐026
    [Google Scholar]
  37. Jackson, C.‐A.‐L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: A test of competing fault growth models. Geol, 54, 215–234. https://doi.org/10.1016/j.jsg.2013.06.012
    [Google Scholar]
  38. Jarsve, E. M., Faleide, J. I. N., Gabrielsen, R. H. Y., & Nystuen, J. P. (2014). Mesozoic and cenozoic basin configurations in the North Sea.
  39. Jarsve, E. M., Maast, T. E., Gabrielsen, R. H., Faleide, J. I., Nystuen, J. P., & Sassier, C. (2014). Seismic stratigraphic subdivision of the Triassic succession in the Central North Sea; integrating seismic reflection and well data. Journal of the Geological Society, 171(3), 353–374. https://doi.org/10.1144/jgs2013‐056
    [Google Scholar]
  40. Kim, Y.‐S., & Sanderson, D. J. (2005). The relationship between displacement and length of faults: A review. Earth‐Science Reviews, 68(3), 317–334. https://doi.org/10.1016/j.earscirev.2004.06.003
    [Google Scholar]
  41. Kirkpatrick, J. D., Bezerra, F. H. R., Shipton, Z. K., Do Nascimento, A. F., Pytharouli, S. I., Lunn, R. J., & Soden, A. M. (2013). Scale‐dependent influence of pre‐existing basement shear zones on rift faulting: A case study from NE Brazil. Journal of the Geological Society, 170(2), 237. https://doi.org/10.1144/jgs2012‐043
    [Google Scholar]
  42. Klemperer, S. L. (1988). Crustal thinning and nature of extension in the northern North Sea from deep seismic reflection profiling. Tectonics, 7(4), 803–821. https://doi.org/10.1029/TC007i004p00803
    [Google Scholar]
  43. Kolawole, F., Atekwana, E. A., Laó‐Dávila, D. A., Abdelsalam, M. G., Chindandali, P. R., Salima, J., & Kalindekafe, L. (2018). Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric. Tectonics, 37(3), 683–704. https://doi.org/10.1002/2017TC004628
    [Google Scholar]
  44. Ksiensyk, A. K., Wemmer, K., Jacobs, J., Fossen, H., Schomberg, A. C., Süssenberger, A. N., Lünsdorf, K., & Bastesen, E. (2016). Post‐Caledonian brittle deformation in the Bergen area, West Norway: Results from K‐Ar illite fault gouge dating. Norwegian Journal of Geology, 96(3), 275–299. https://doi.org/10.17850/njg96‐3‐06
    [Google Scholar]
  45. Lenhart, A., Jackson, C.‐A.‐L., Bell, R. E., Duffy, O. B., Gawthorpe, R. L., & Fossen, H. (2019). Structural architecture and composition of crystalline basement offshore west Norway. Lithosphere, 11(2), 273–293. https://doi.org/10.1130/L668.1
    [Google Scholar]
  46. Lervik, K. S. (2006). Triassic lithostratigraphy of the northern North Sea Basin. Norwegian Journal of Geology, 86, 93–116.
    [Google Scholar]
  47. Long, J. J., & Imber, J. (2010). Geometrically coherent continuous deformation in the volume surrounding a seismically imaged normal fault‐array. Journal of Structural Geology, 32(2), 222–234. https://doi.org/10.1016/j.jsg.2009.11.009
    [Google Scholar]
  48. Lundin, E. R., & Doré, A. G. (1997). A tectonic model for the Norwegian passive margin with implications for the NE Atlantic: Early Cretaceous to break‐up. Journal of the Geological Society, 154(3), 545. https://doi.org/10.1144/gsjgs.154.3.0545
    [Google Scholar]
  49. Marrett, R., & Allmendinger, R. W. (1992). Amount of extension on "small" faults: An example from the Viking graben. Geology, 20(1), 47. https://doi.org/10.1130/0091‐7613(1992)020<0047:AOEOSF>2.3.CO;2
    [Google Scholar]
  50. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  51. McKenzie, D. A. N., & O'Nions, R. K. (1991). Partial melt distributions from inversion of rare earth element concentrations. Petrology, 32(5), 1021–1091. https://doi.org/10.1093/petrology/32.5.1021
    [Google Scholar]
  52. McLeod, A. E., Dawers, N. H., & Underhill, J. R. (2000). The propagation and linkage of normal faults: Insights from the Strathspey–Brent–Statfjord fault array, northern North Sea. Basin Research, 12(3–4), 263–284. https://doi.org/10.1111/j.1365‐2117.2000.00124.x
    [Google Scholar]
  53. Meyer, V., Nicol, A., Childs, C., Walsh, J. J., & Watterson, J. (2002). Progressive localisation of strain during the evolution of a normal fault population. Journal of Structural Geology, 24(8), 1215–1231. https://doi.org/10.1016/S0191‐8141(01)00104‐3
    [Google Scholar]
  54. Morley, C. K. (1996). Discussion of potential errors in fault heave methods for extension estimates in rifts, with particular reference to fractal fault populations and inherited fabrics. Geological Society, London, Special Publications, 99(1), 117. https://doi.org/10.1144/GSL.SP.1996.099.01.10
    [Google Scholar]
  55. Morley, C. K. (2017). The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand. Geological Society, London, Special Publications, 439(1), 413. https://doi.org/10.1144/SP439.3
    [Google Scholar]
  56. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts1. Bulletin, 74(8), 1234–1253. https://doi.org/10.1306/0C9B2475‐1710‐11D7‐8645000102C1865D
    [Google Scholar]
  57. Naliboff, J., & Buiter, S. J. H. (2015). Rift reactivation and migration during multiphase extension. Earth and Planetary Science Letters, 421, 58–67. https://doi.org/10.1016/j.epsl.2015.03.050
    [Google Scholar]
  58. Nicol, A., Walsh, J., Berryman, K., & Nodder, S. (2005). Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology, 27(2), 327–342. https://doi.org/10.1016/j.jsg.2004.09.002
    [Google Scholar]
  59. Odinsen, T., Christiansson, P., Gabrielsen, R. H., Faleide, J. I., & Berge, A. M. (2000). The geometries and deep structure of the northern North Sea rift system. Geological Society, London, Special Publications, 167(1), 41–57. https://doi.org/10.1144/GSL.SP.2000.167.01.03
    [Google Scholar]
  60. Odinsen, T., Reemst, P., van der Beek, P., Faleide, J. I., & Gabrielsen, R. H. (2000). Permo‐Triassic and Jurassic extension in the northern North Sea: Results from tectonostratigraphic forward modelling. Geological Society, London, Special Publications, 167(1), 83–103. https://doi.org/10.1144/GSL.SP.2000.167.01.05
    [Google Scholar]
  61. Osagiede, E. E., Rotevatn, A., Gawthorpe, R., Kristensen, T. B., Jackson, C.‐A.‐L., & Marsh, N. (2019). Pre‐existing intra‐basement shear zones influence growth and geometry of non‐colinear normal faults, western Utsira High‐Heimdal Terrace, North Sea. Journal of Structural Geology, 130, 103908. https://doi.org/10.1016/j.jsg.2019.103908
    [Google Scholar]
  62. Osmundsen, P. T., & Andersen, T. B. (1994). Caledonian compressional and late‐orogenic extensional deformation in the Staveneset area, Sunnfjord, Western Norway. Journal of Structural Geology, 16(10), 1385–1401. https://doi.org/10.1016/0191‐8141(94)90004‐3
    [Google Scholar]
  63. Paton, D. A. (2006). Influence of crustal heterogeneity on normal fault dimensions and evolution: Southern South Africa extensional system. Journal of Structural Geology, 28(5), 868–886. https://doi.org/10.1016/j.jsg.2006.01.006
    [Google Scholar]
  64. Paton, D. A., & Underhill, J. R. (2004). Role of crustal anisotropy in modifying the structural and sedimentological evolution of extensional basins: The Gamtoos Basin, South Africa. Basin Research, 16(3), 339–359. https://doi.org/10.1111/j.1365‐2117.2004.00237.x
    [Google Scholar]
  65. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721–733. https://doi.org/10.1016/0191‐8141(91)90033‐F
    [Google Scholar]
  66. Pérez‐Gussinyé, M., & Reston, T. J. (2001). Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research, 106(B3), 3961–3975. https://doi.org/10.1029/2000JB900325
    [Google Scholar]
  67. Petersen, K., Clausen, O. R., & Korstgård, J. A. (1992). Evolution of a salt‐related listric growth fault near the d‐1 well, block 5605, Danish North Sea: Displacement history and salt kinematics. Journal of Structural Geology, 14(5), 565–577. https://doi.org/10.1016/0191‐8141(92)90157‐R
    [Google Scholar]
  68. Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C.‐A.‐L., Bell, R. E., Faleide, J. I., & Rotevatn, A. (2019). The Influence of Structural Inheritance and Multiphase Extension on Rift Development, the NorthernNorth Sea. Tectonics, 38(12), 4099–4126. https://doi.org/10.1029/2019TC005756
    [Google Scholar]
  69. Phillips, T. B., Jackson, C.‐A.‐L., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008
    [Google Scholar]
  70. Reemst, P., & Cloetingh, S. (2000). Polyphase rift evolution of the Vøring margin (mid‐Norway): Constraints from forward tectonostratigraphic modeling. Tectonics, 19(2), 225–240. https://doi.org/10.1029/1999TC900025
    [Google Scholar]
  71. Reeve, M. T., Bell, R. E., & Jackson, C.‐A.‐L. (2014). Origin and significance of intra‐basement seismic reflections offshore western Norway. Journal of the Geological Society, 171(1), 1. https://doi.org/10.1144/jgs2013‐020
    [Google Scholar]
  72. Riber, L., Dypvik, H., & Sørlie, R. (2015). Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea. Norwegian Journal of Geology. https://doi.org/10.17850/njg95‐1‐04
    [Google Scholar]
  73. Ro, H. E., & Faleide, J. I. (1992). A stretching model for the Oslo Rift. Tectonophysics, 208(1), 19–36. https://doi.org/10.1016/0040‐1951(92)90334‐3
    [Google Scholar]
  74. Roberts, A. M., Yielding, G., Kusznir, N. J., Walker, I., & Dorn‐lopez, D. (1993). Mesozoic extension in the North Sea: Constraints from flexural backstripping, forward modelling and fault populations. Geological Society, London, Petroleum Geology Conference Series, 4(1), 1123–1136. https://doi.org/10.1144/0041123
    [Google Scholar]
  75. Roberts, A. M., Yielding, G., Kuznir, N. J., Walker, I. M., & Dorn‐Lopes, D. (1995). Quantitative analysis of Triassic extension in the northern Viking Graben. Journal of the Geological Society, 152(1), 15–26. https://doi.org/10.1144/gsjgs.152.1.0015
    [Google Scholar]
  76. Rotevatn, A., Jackson, C.‐A.‐L., Tvedt, A. B. M., Bell, R. E., & Blækkan, I. (2019). How do normal faults grow?Journal of Structural Geology, 125, 174–184. https://doi.org/10.1016/j.jsg.2018.08.005
    [Google Scholar]
  77. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., Grundvåg, S.‐A., & Andresen, A. (2018). Structural inheritance and rapid rift‐length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry. Tectonics, 37(6), 1858–1875. https://doi.org/10.1029/2018TC005018
    [Google Scholar]
  78. Salomon, E., Koehn, D., & Passchier, C. (2015). Brittle reactivation of ductile shear zones in NW Namibia in relation to South Atlantic rifting. Tectonics, 34(1), 70–85. https://doi.org/10.1002/2014TC003728
    [Google Scholar]
  79. Schultz, R. A., Soliva, R., Fossen, H., Okubo, C. H., & Reeves, D. M. (2008). Dependence of displacement–length scaling relations for fractures and deformation bands on the volumetric changes across them. Journal of Structural Geology, 30(11), 1405–1411. https://doi.org/10.1016/j.jsg.2008.08.001
    [Google Scholar]
  80. Sclater, J. G., & Célérier, B. (1988). Errors in extension measurements from planar faults observed on seismic reflection lines. Basin Research, 1(4), 217–221. https://doi.org/10.1111/j.1365‐2117.1988.tb00017.x
    [Google Scholar]
  81. Séranne, M., & Séguret, M. (1987). The Devonian basins of western Norway: Tectonics and kinematics of an extending crust. Geological Society, London, Special Publications, 28(1), 537. https://doi.org/10.1144/GSL.SP.1987.028.01.35
    [Google Scholar]
  82. Slagstad, T., Davidsen, B., & Daly, J. S. (2011). Age and composition of crystalline basement rocks on the Norwegian continental margin: Offshore extension and continuity of the Caledonian‐Appalachian orogenic belt. Journal of the Geological Society, 168(5), 1167–1185. https://doi.org/10.1144/0016‐76492010‐136
    [Google Scholar]
  83. Sømme, T. O., Martinsen, O. J., & Lunt, I. (2013). Linking offshore stratigraphy to onshore paleotopography: The Late Jurassic‐Paleocene evolution of the south Norwegian margin. Geological Society of America Bulletin, 125(7–8), 1164–1186. https://doi.org/10.1130/B30747.1
    [Google Scholar]
  84. Steel, R. J. (1993). Triassic‐Jurassic megasequence stratigraphy in the Northern North Sea: Rift to post‐rift evolution. Petroleum Geology Conference Series, 4(1), 299. https://doi.org/10.1144/0040299
    [Google Scholar]
  85. Steel, R., & Ryseth, A. (1990). The Triassic — early Jurassic succession in the northern North Sea: Megasequence stratigraphy and intra‐Triassic tectonics. Geological Society, London, Special Publications, 55(1), 139. https://doi.org/10.1144/GSL.SP.1990.055.01.07
    [Google Scholar]
  86. Svartman Dias, A. E., Lavier, L. L., & Hayman, N. W. (2015). Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes. Journal of Geophysical Research: Solid Earth, 120(12), 8672–8700. https://doi.org/10.1002/2015JB012074
    [Google Scholar]
  87. ten Veen, J. H., & Kleinspehn, K. L. (2000). Quantifying the timing and sense of fault dip slip: New application of biostratigraphy and geohistory analysis. Geology, 28(5), 471–474. https://doi.org/10.1130/0091‐7613(2000)28<471:QTTASO>2.0.CO;2
    [Google Scholar]
  88. Ter Voorde, M., Færseth, R. B., Gabrielsen, R. H., & Cloetingh, S. A. P. L. (2000). Repeated lithosphere extension in the northern Viking Graben: A coupled or a decoupled rheology?Geological Society, London, Special Publications, 167(1), 59–81. https://doi.org/10.1144/GSL.SP.2000.167.01.04
    [Google Scholar]
  89. Tetreault, J. L., & Buiter, S. J. H. (2018). The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break‐up. Tectonophysics, 746, 155–172. https://doi.org/10.1016/j.tecto.2017.08.029
    [Google Scholar]
  90. Tett, D., & Sawyer, D. (1996). Dynamic models of multiphase continental rifting and their implications for the Newfoundland and Iberia conjugate margins. Proceedings of the Ocean Drilling Program, Scientific Results, 149, 635–647. https://doi.org/10.2973/odp.proc.sr.149.247.1996
    [Google Scholar]
  91. Tomasso, M., Underhill, J. R., Hodgkinson, R. A., & Young, M. J. (2008). Structural styles and depositional architecture in the Triassic of the Ninian and Alwyn North fields: Implications for basin development and prospectivity in the Northern North Sea. Marine and Petroleum Geology, 25(7), 588–605. https://doi.org/10.1016/j.marpetgeo.2007.11.007
    [Google Scholar]
  92. Torsvik, T. H., Sturt, B. A., Swensson, E., Andersen, T. B., & Dewey, J. F. (1992). Palaeomagnetic dating of fault rocks: Evidence for Permian and Mesozoic movements and brittle deformation along the extensional Dalsfjord Fault, western Norway. Geophysical Journal International, 109(3), 565–580. https://doi.org/10.1111/j.1365‐246X.1992.tb00118.x
    [Google Scholar]
  93. Underhill, J. R., & Partington, M. A. (1993). Jurassic thermal doming and deflation in the North Sea: Implications of the sequence stratigraphic evidence. Petroleum Geology Conference Series, 4(1), 337. https://doi.org/10.1144/0040337
    [Google Scholar]
  94. van Wijk, J. W., & Cloetingh, S. A. P. L. (2002). Basin migration caused by slow lithospheric extension. Earth and Planetary Science Letters, 198(3), 275–288. https://doi.org/10.1016/S0012‐821X(02)00560‐5
    [Google Scholar]
  95. Vetti, V. V., & Fossen, H. (2012). Origin of contrasting Devonian supradetachment basin types in the Scandinavian Caledonides. Geology, 40(6), 571–574. https://doi.org/10.1130/G32512.1
    [Google Scholar]
  96. Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24(11), 1669–1675. https://doi.org/10.1016/S0191‐8141(01)00165‐1
    [Google Scholar]
  97. Walsh, J., Watterson, J., & Yielding, G. (1991). The importance of small‐scale faulting in regional extension. Nature, 351(6325), 391–393. https://doi.org/10.1038/351391a0
    [Google Scholar]
  98. Welford, J. K., Smith, J. A., Hall, J., Deemer, S., Srivastava, S. P., & Sibuet, J.‐C. (2010). Structure and rifting evolution of the northern Newfoundland Basin from Erable multichannel seismic reflection profiles across the southeastern margin of Flemish Cap. Geophysical Journal International, 180(3), 976–998. https://doi.org/10.1111/j.1365‐246X.2009.04477.x
    [Google Scholar]
  99. Whipp, P. S., Jackson, C.‐A.‐L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26(4), 523–549. https://doi.org/10.1111/bre.12050
    [Google Scholar]
  100. Wrona, T., Magee, C., Fossen, H., Gawthorpe, R. L., Bell, R. E., Jackson, C.‐A.‐L., & Faleide, J. I. (2019). 3‐D seismic images of an extensive igneous sill in the lower crust. Geology, 47(8), 729–733. https://doi.org/10.1130/G46150.1
    [Google Scholar]
  101. Ziegler, P. A. (1990). Tectonic and palaeogeographic development of the North Sea rift system. In Tectonic Evolution of North Sea Rifts (pp. 1–36).
    [Google Scholar]
  102. Ziegler, P. A. (1992). North Sea rift system. Tectonophysics, 208(1), 55–75. https://doi.org/10.1016/0040‐1951(92)90336‐5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12522
Loading
/content/journals/10.1111/bre.12522
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error