1887
Volume 68 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Reflection seismic data were acquired within two field campaigns in the Blötberget, Ludvika mining area of central Sweden, for deep imaging of iron‐oxide mineralization that were known to extend down to 800–850 m depth. The two surveys conducted in years 2015 and 2016, one employing a seismic landstreamer and geophones connected to wireless recorders, and another one using cabled geophones and wireless recorders, aimed to delineate the geometry and depth extent of the iron‐oxide mineralization for when mining commences in the area. Even with minimal and conventional processing approaches, the merged datasets provide encouraging information about the depth continuation of the mineralized horizons and the geological setting of the study area. Multiple sets of strong reflections represent a possible continuation of the known deposits that extend approximately 300 m further down‐dip than the known 850 m depth obtained from historical drilling. They show excellent correlation in shape and strength with those of the Blötberget deposits. Furthermore, several reflections in the footwall of the known mineralization can potentially be additional resources underlying the known ones. The results from these seismic surveys are encouraging for mineral exploration purposes given the good quality of the final section and fast seismic surveys employing a simple cost‐effective and easily available impact‐type seismic source.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12855
2019-08-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/1/gpr12855.html?itemId=/content/journals/10.1111/1365-2478.12855&mimeType=html&fmt=ahah

References

  1. AhmadiO., JuhlinC., MalehmirA. and MunckM.2013. High‐resolution 2D seismic imaging and forward modeling of a polymetallic sulfide deposit at Garpenberg, central Sweden. Geophysics78, B339–B350.
    [Google Scholar]
  2. AllenR.L., LundstromI., RipaM. and ChristoffersonH.1996. Facies analysis of a 1.9 Ga, continental margin, back‐arc, felsic caldera province with diverse Zn‐Pb‐Ag‐(Cu‐Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology91, 979–1008.
    [Google Scholar]
  3. AlmqvistB.S.G., BjörkA., MattssonH.B., HedlundD., GunnarssonK., MalehmirA.et al. 2019. Magnetic characterisation of magnetite and hematite from the Blötberget apatite‐iron‐oxide deposits (Bergslagen), south‐central Sweden. Canadian Journal of Earth Sciences. Published on the web January 7, 2019.
    [Google Scholar]
  4. BalestriniF., DraganovD., MalehmirA., MarsdenP. and GhoseR.2020. Improved target illumination at Ludvika mines of Sweden through seismic‐interferometric surface‐wave suppression. Geophysical Prospecting68, 200–213.
    [Google Scholar]
  5. BellefleurG., MüllerC., SnyderD. and MatthewsL.2004. Downhole seismic imaging of a massive sulfide orebody with mode‐converted waves, Halfmile Lake, New Brunswick, Canada. Geophysics69, 318–329.
    [Google Scholar]
  6. BellefleurG., MalehmirA. and MüllerC.2012. Elastic finite‐difference modeling of volcanic‐hosted massive sulfide deposits: A case study from Half Mile Lake, New Brunswick, Canada. Geophysics77, WC25–WC36.
    [Google Scholar]
  7. BräunigL., BuskeS., MalehmirA., BäckströmE., SchönM. and MarsdenP.2020. Seismic depth imaging of iron‐oxide deposits and their host rocks in the Ludvika mining area of central Sweden. Geophysical Prospecting68, 24–43.
    [Google Scholar]
  8. BrodicB., MalehmirA., JuhlinC., DynesiusL., BastaniM. and PalmH.2015. Multicomponent broadband digital‐based seismic landstreamer for near‐surface applications. Journal of Applied Geophysics123, 227–241.
    [Google Scholar]
  9. CheraghiS., MalehmirA. and BellefleurG.2012. 3D imaging challenges in steeply dipping mining structures: New lights on acquisition geometry and processing from the Brunswick no. 6 seismic data, Canada. Geophysics77, WC109–WC122.
    [Google Scholar]
  10. DehghannejadM., JuhlinC., MalehmirA., SkyttäP. and WeihedP.2010. Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics71, 125–136.
    [Google Scholar]
  11. EatonD., MilkereitB. and SalisburyM.2003. Mature technologies adapted to new exploration targets, Foreword to hardrock seismic exploration. In Hardrock Seismic Exploration, pp.1–6. Society of Exploration Geophysicists.
    [Google Scholar]
  12. GórszczykA., AdamczykA. and MalinowskiM.2014. Application of curvelet denoising to 2D and 3D seismic data ‐ Practical considerations. Journal of Applied Geophysics105, 78–94.
    [Google Scholar]
  13. GeijerP. and MagnussonN.H.1944. De Mellansvenska Järnmalmernas Geologi. Geological Survey of Sweden.
    [Google Scholar]
  14. JonssonE., TrollV.R., HögdahlK., HarrisC., WeisF., NilssonK.P.et al. 2013. Magmatic origin of giant ‘Kiruna‐type’ apatite‐iron‐oxide ores in Central Sweden. Scientific Reports3, 1644.
    [Google Scholar]
  15. von KetelhodtJ.K., ManziM.S.D. and DurrheimR.J.Post‐stack denoising of legacy reflection seismic data: implications for coalbed methane exploration, Kalahari Karoo Basin, Botswana. Exploration Geophysics, under review.
  16. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations at the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  17. MalehmirA., SchmelzbachC., BongajumE., BellefleurG., JuhlinC. and TryggvasonA.2009. 3D constraints on a possible deep >2.5 km massive sulphide mineralization from 2D crooked‐line seismic reflection data in the Kristineberg mining area, northern Sweden. Tectonophysics479, 223–240.
    [Google Scholar]
  18. MalehmirA. and BellefleurG.2010. Reflection seismic imaging and physical properties of base‐metal and associated iron deposits in the Bathurst Mining Camp, New Brunswick, Canada. Ore Geology Reviews38, 319–333.
    [Google Scholar]
  19. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.J.et al. 2012. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  20. MalehmirA., AnderssonM., LebedevM., UrosevicM. and MikhaltsevitchV.2013a. Experimental estimation of velocities and anisotropy of a series of Swedish crystalline rocks and ores: velocities and anisotropy of a series of crystalline rocks and ores. Geophysical Prospecting61, 153–167.
    [Google Scholar]
  21. MalehmirA., KoivistoE., ManziM., CheraghiS., DurrheimR.J., BellefleurG.et al. 2014. A review of reflection seismic investigations in three major metallogenic regions: The Kevitsa Ni–Cu–PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews56, 423–441.
    [Google Scholar]
  22. MalehmirA., WangS., LamminenJ., BrodicB., BastaniM., VaittinenK.et al. 2015. Delineating structures controlling sandstone‐hosted base‐metal deposits using high‐resolution multicomponent seismic and radio‐magnetotelluric methods: a case study from Northern Sweden. Geophysical Prospecting63, 774–797.
    [Google Scholar]
  23. MalehmirA., MariesG., BäckströmE., SchönM. and MarsdenP.2017a. Developing cost‐effective seismic mineral exploration methods using a landstreamer and a drophammer. Scientific Reports7, 10325.
    [Google Scholar]
  24. MalehmirA., DynesiusL., PaulussonK., PaulussonA., JohanssonH., BastaniM.et al. 2017b. The potential of rotary‐wing UAV‐based magnetic surveys for mineral exploration: a case study from central Sweden. The Leading Edge36, 552–557.
    [Google Scholar]
  25. MalehmirA., HeinonenS., DehghannejadM., HeinoP., MariesG., KarellF.et al. 2017c. Landstreamer seismics and physical property measurements in the Siilinjärvi open‐pit apatite (phosphate) mine, central Finland. Geophysics82, B29–B48.
    [Google Scholar]
  26. MalehmirA., HolmesP., GisseløP., SoccoL.V., CarvalhoJ., MarsdenP.et al. 2019. Smart exploration: innovative ways of exploring for the raw materials in the EU. 81st EAGE meeting, London, UK, Expanded Abstracts, Th_R16_16.
  27. MalinowskiM., SchetselaarE. and WhiteD.J.2012. 3D seismic imaging of volcanogenic massive sulfide deposits in the Flin Flon mining camp, Canada: Part 2 — Forward modeling. Geophysics77, WC81–WC93.
    [Google Scholar]
  28. ManziM.S.D., GibsonM.A.S., HeinK.A.A., KingN. and DurrheimR.J.2012. Application of 3D seismic techniques to evaluate ore resources in the West Wits Line goldfield and portions of the West Rand goldfield, South Africa. Geophysics77, WC163–WC171.
    [Google Scholar]
  29. ManziM.S.D., HeinK.A.A., DurrheimR.J. and KingN.2014. The Ventersdorp Contact Reef model in the Kloof Gold Mine as derived from 3D seismics, geological mapping and exploration borehole datasets. International Journal of Rock Mechanics and Mining Sciences66, 97–113.
    [Google Scholar]
  30. MariesG., MalehmirA., BackströmE., SchönM. and MarsdenP.2017a. Reflection seismic imaging of iron‐oxide deposits ‐ an example from Bergslagen mining district of Sweden. EAGE Near Surface Geoscience meeting, First Conference on Geophysics for Mineral Exploration and Mining, Barcelona, Spain, Expanded Abstracts, We 23P1 02.
  31. MariesG., MalehmirA., BäckströmE., SchönM. and MarsdenP.2017b. Downhole physical property logging for iron‐oxide exploration, rock quality, and mining: An example from central Sweden. Ore Geology Reviews, 90, 1–13.
    [Google Scholar]
  32. MilkereitB., EatonD., WuJ., PerronG., SalisburyM.H., BerrerE.K.et al. 1996. Seismic imaging of massive sulfide deposits; Part II, reflection seismic profiling. Economic Geology91, 829–834.
    [Google Scholar]
  33. MougenotD., CherepovskiyA. and JunJieL.2011. MEMS‐based accelerometers: expectations and practical achievements. First Break29, 85–90.
    [Google Scholar]
  34. NaghizadehM. and SacchiM.2018. Ground‐roll attenuation using curvelet downscaling. Geophysics83, V185–V195.
    [Google Scholar]
  35. NeelamaniR., BaumsteinA., GillardD., HadidiM. and SorokaW.2008. Coherent and random noise attenuation using the curvelet transform. The Leading Edge27, 240–248.
    [Google Scholar]
  36. PapadopoulouM., Da ColF., MiB., BäckströmE., MarsdenP., MalehmirA. and SoccoL.V.2020Surface‐wave analysis for static corrections in mineral exploration: a case study from central Sweden. Geophysical Prospecting68, 214–231.
    [Google Scholar]
  37. PlaceJ., MalehmirA., HögdahlK., JuhlinC. and NilssonK.P.2015. Seismic characterization of the Grängesberg iron deposit and its mining‐induced structures, central Sweden. Interpretation3, SY41–SY56.
    [Google Scholar]
  38. PlaceJ. and MalehmirA.2016. Using supervirtual first arrivals in controlled‐source hardrock seismic imaging—well worth the effort. Geophysical Journal International206, 716–730.
    [Google Scholar]
  39. RipaM. and KüblerL.2003. Apatite‐Bearing Iron Ores in the Bergslagen Region of South‐Central Sweden. Sveriges Geologiska Undersökning.
    [Google Scholar]
  40. SalisburyM.H., MilkereitB. and BleekerW.1996. Seismic imaging of massive sulfide deposits; part I, rock properties. Economic Geology91, 821–828.
    [Google Scholar]
  41. SalisburyM.H., HarveyC.W. and MatthewsL.2003. The acoustic properties of ores and host rocks in hardrock terranes. In: Hardrock Seismic Exploration (eds. D.W.Eaton, B.Milkereit and M.H.Salisbury ), pp.9–19. Society of Exploration Geophysicists.
    [Google Scholar]
  42. StephensM., AhlM., BergmanT., LundströmI., PerssonL., RipaM.et al. 2000. Syntes Av Berggrundsgeologisk Och Geofysisk Information, Bergslagen Och Omgivande Områden. Regional berggrundsgeologisk undersökning. Sammanfattning av pågående undersökningar 1999 (ed. H.Delin). Sveriges geologiska undersökning Rapporter och medde ‐ landen 102.
    [Google Scholar]
  43. StephensM.B., RipaM., LundströmI., PerssonL., BergmanT., AhlM.et al. 2009. Synthesis of the Bedrock Geology in the Bergslagen Region, Fennoscandian Shield, South‐Central Sweden. Sveriges geologiska undersökning (SGU).
    [Google Scholar]
  44. UrosevicM. and EvansB.J.1998. Seismic methods for the detection of kimberlite pipes. Exploration Geophysics29, 632–635.
    [Google Scholar]
  45. UrosevicM., BhatG. and GrochauM.H.2012. Targeting nickel sulfide deposits from 3D seismicreflection data at Kambalda, Australia, targeting Ni deposits from 3D seismic. Geophysics77, WC123–WC132.
    [Google Scholar]
  46. UrosevicM., CampbellA.J., DahlhausL., GendrinA., LeaneyW.S., TcherkashnevS. and VerliacM.2009. Seismic Monitoring and Verification for the CO2CRC Otway Basin Project, Part 2: acquisition and analysis of borehole seismic data. Energy Procedia1, 3135–3140.
    [Google Scholar]
  47. UrosevicM., ZiramovS. and MoreauX.2016. The first experimental seismic investigation over prospective uranium deposits at Mulga Rock, Western Australia. EAGE Near Surface Geoscience meeting, First Conference on Geophysics for Mineral Exploration and Mining, Barcelona, Spain, Expanded Abstracts, We MIN 08.
  48. WårellL.2018. An analysis of iron ore prices during the latest commodity boom. Mineral Economics31, 203–216.
    [Google Scholar]
  49. YehuwalashetE. and MalehmirA.2018. Gravity and magnetic survey, modeling and interpretation in the Blötberget iron‐oxide mining area of central Sweden. 88th SEG annual meeting, Anaheim, USA, Technical Program Expanded Abstracts, 1479–1483.
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12855
Loading
/content/journals/10.1111/1365-2478.12855
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Data processing; Imaging; Seismic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error