1887
Volume 68 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Seismic methods are becoming an established choice for deep mineral exploration after being extensively tested and employed for the past two decades. To investigate whether the early European mineral‐exploration datasets had potential for seismic imaging that was overlooked, we recovered a low‐fold legacy seismic dataset from the Neves–Corvo mine site in the Iberian Pyrite Belt in southern Portugal. This dataset comprises six 4–6 km long profiles acquired in 1996 for deep targeting. Using today's industry‐scale processing algorithms, the world‐class, ca. 150 Mt, Lombador massive sulphide and other smaller deposits were better imaged. Additionally, we also reveal a number of shallow but steeply dipping reflections that were absent in the original processing results. This study highlights that legacy seismic data are valuable and should be revisited regularly to take advantage of new processing algorithms and the experiences gained from processing such data in hard‐rock environments elsewhere. Remembering that an initial processing job in hard rock should always aim to first obtain an overall image of the subsurface and make reflections visible, and then subsequent goals of the workflow could be set to, for example understanding relative amplitude ratios. The imaging of the known mineralization implies that this survey could likely have been among one of the pioneer studies in the world that demonstrated the capability of directly imaging massive sulphide deposits using the seismic method.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12861
2019-09-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/1/gpr12861.html?itemId=/content/journals/10.1111/1365-2478.12861&mimeType=html&fmt=ahah

References

  1. AbdiA., HeinonenS., JuhlinC. and TuomoK.2015. Constraints on the geometry of the Suasselkä post‐glacial fault, northern Finland, based on reflection seismic imaging. Tectonophysics649, 130–138.
    [Google Scholar]
  2. AdamE., MilkereitB., ArnoldG., and PineaultR.1996. Seismic response of the Bell Allard orebody, Matagami, Quebec. 66th Annual International Meeting, SEG, Expanded Abstracts, 634–637.
  3. AyarzaP., JuhliC., BrownD., BeckholmenM., KimbellG., PechningR.et al. 2000. Integrated geological and geophysical studies in the SG4 borehole area, Tagil Volcanic Arc, Middle Urals: location of seismic reflectors and source of the reflectivity. Journal of Geophysical Research105, 21333–21352.
    [Google Scholar]
  4. BellefleurG., CheraghiS. and MalehmirA.2018. Reprocessing legacy three‐dimensional seismic data from the Halfmile Lake and Brunswick No. 6 volcanogenic massive sulphide deposits, New Brunswick, Canada. Canadian Journal of Earth Sciences999, 1–15.
    [Google Scholar]
  5. BellefleurG., SchetselaarE., WhiteD., MiahK. and DueckP.2015. 3D seismic imaging of the Lalor volcanogenic massive sulphide deposit, Manitoba, Canada. Geophysical Prospecting63, 813–832.
    [Google Scholar]
  6. CarvalhoJ.R.S., FernandesA.S., MoreiraB.B., PintoA.M.M., RelvasJ.M.R.S., PachecoN.et al. 2013. Hydrothermal alteration and ore mineralogy at the Lombador Massive Sulphide Orebody, Neves Corvo, Portugal: an on‐going study. 12th SGA Bien Meeting ‘Min Dep Res for a High‐Tech World’, 514–517. SEG.
  7. CheraghiS., MalehmirA. and BellefleurG.2012. 3D imaging challenges in steeply dipping mining environment: new lights on acquisition geometry and processing from the Brunswick no 6 seismic data, Canada. Geophysics77, WC109–WC122.
    [Google Scholar]
  8. CheraghiS., MalehmirA., BellefleurG., BongajumE. and BastaniM.2013. Scaling behavior and the effects of heterogeneity on shallow seismic imaging of mineral deposits: a case study from Brunswick No. 6 mining area, Canada. Journal of Applied Geophysics90, 1–18.
    [Google Scholar]
  9. DehghannejadM., BauerT., MalehmirA., JuhlinC. and WeihedP.2012. Crustal geometry of the central Skellefte district, northern Sweden ‐constraints from reflection seismic investigations. Tectonophysics524, 87–99.
    [Google Scholar]
  10. DehghannejadM., JuhlinC., MalehmirA., SkyttäP. and WeihedP.2010. Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics71, 125–136.
    [Google Scholar]
  11. DentithM. and MudgeS.2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press.
    [Google Scholar]
  12. EatonD., MilkereitB. and SalisburyM.2003. Hardrock seismic exploration: mature technologies adapted to new exploration targets. In: Foreword to Hardrock Seismic Exploration, Vol. 10, pp. 1–6. SEG.
    [Google Scholar]
  13. EhsanS.A., MalehmirA. and DehghannejadM.2012. Re‐processing and interpretation of 2D seismic data from the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics80, 43–55.
    [Google Scholar]
  14. FaisS., PorcedduE. and ToccoR.1991. High‐resolution seismic reflection survey of a massive sulphide orebody in Sardinia, Italy – an experiment. Ore Geology Reviews6, 1–8.
    [Google Scholar]
  15. HammerP.T.C., ClowesR.M., CookF.A., VasudevanK. and Van der VeldenA.J.2011. The big picture: a lithospheric cross section of the North American continent. GSA Today21, 4–10.
    [Google Scholar]
  16. JuhlinC., SturkellE., OveR., EbbestadJ., LehnertO., HögströmA.E.S.et al. 2012. A new interpretation of the sedimentary cover in the western Siljan Ring area, central Sweden, based on seismic data. Tectonophysics580, 88–99.
    [Google Scholar]
  17. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D reflection seismic investigations in the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  18. MalehmirA., AnderssonM., LebedevM., UrosevicM. and MikhaltsevitchV.2013. Experimental estimation of velocities and anisotropy of a series of Swedish crystalline rocks and ores. Geophysical Prospecting61, 153–167.
    [Google Scholar]
  19. MalehmirA. and BellefleurG.2009. 3D seismic reflection imaging of volcanic‐hosted massive sulfide deposits: insights from reprocessing Halfmile Lake data, New Brunswick, Canada. Geophysics74, B209–B219.
    [Google Scholar]
  20. MalehmirA. and BellefleurG.2010. Reflection seismic imaging and physical properties of base‐metal and associated iron deposits in the Bathurst Mining Camp, New Brunswick, Canada. Ore Geology Reviews38, 319–333.
    [Google Scholar]
  21. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.et al. 2012. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  22. MalehmirA., MariesG., BäckströmE., SchönM. and MarsdenP.2017. Developing cost‐effective seismic mineral exploration methods using a landstreamer and a drophammer. Scientific Reports Scientific Reports7, 10327.
    [Google Scholar]
  23. ManziM., CooperG., MalehmirA., DurrheimR. and NkosiZ.2015. Integrated interpretation of 3D seismic data to enhance the detection of the gold‐bearing reef: Mponeng Gold mine, Witwatersrand Basin (South Africa). Geophysical Prospecting63, 881–902.
    [Google Scholar]
  24. MatthewsL.2002. Base metal exploration: looking deeper and adding value with seismic data. Canadian Society of Exploration Geophysicists Recorder27, 37–43.
    [Google Scholar]
  25. MilkereitB., EatonD.W., WuJ., PerronG., SalisburyM.H., BerrerE.et al. 1996. Seismic imaging of massive sulphide deposits: part II. Reflection seismic profiling. Economic Geology91, 829–834.
    [Google Scholar]
  26. OliveiraJ.T., RosaC.J.P., PereiraZ., RosaD.R.N., Matos, J.X., InvernoC.M.C.et al. 2013. Geology of the Rosário‐Neves Corvo antiform, Iberian Pyrite Belt, Portugal: new insights from physical volcanology, palynostratigraphy and isotope geochronology studies. Mineralium Deposita48, 749–766.
    [Google Scholar]
  27. PachecoN. and FerreiraA.1999. Neves corvo mine, the iberian pyrite belt field trip guide. SGA and IAGOD International Meeting Field Trip B4 (eds F.Tornos, J.Locutura and L.Martins).
    [Google Scholar]
  28. PlaceJ. and MalehmirA.2016. Using supervirtual first arrivals in controlled‐source hardrock seismic imaging – well worth the effort. Geophysical Journal International206, 716–730.
    [Google Scholar]
  29. PretoriusC.C., MullerM.R., LarroqueM. and WilkinsC.2003. A review of 16 years of Hardrock Seismics on the Kaapvaal Craton. In: Hardrock Seismic Exploration (eds David W.Eaton, BerndMilkereit and Matthew HaroldSalisbury), pp. 247–268. SEG Books.
    [Google Scholar]
  30. SalisburyM.H., MilkereitB., AscoughG., AdairR., MatthewsL., SchmittD.R.et al. 2000. Physical properties and seismic imaging of massive sulfides. Geophysics65, 1882–1889.
    [Google Scholar]
  31. Somincor . 1996. Neves‐Corvo mine high‐resolution seismic operations and interpretation report.
  32. TryggvasonA., MalehmirA., Rodriguez‐TablanteJ., JuhlinC. and WeihedP.2006. Reflection seismic investigation in the western part of the Paleoproterozoic VHMS‐bearing Skellefte district, northern Sweden. Economic Geology101, 1039–1054.
    [Google Scholar]
  33. UrosevicM., BhatG. and GrochauM.2012. Targeting nickel sulfide deposits from 3D seismic reflection data at Kambalda, Australia. Geophysics77, WC123–WC132.
    [Google Scholar]
  34. VerpaelstP., PeloquinA.S., AdamE., BarnesA.E., LuddenJ.N., DionD.J.et al. 1995. Seismic reflection profiles across the ‘Mine Series’ in the Noranda camp of the Abitibi belt, eastern Canada. Canadian Journal of Earth Sciences32, 167–176.
    [Google Scholar]
  35. WestD. and PenneyM.2017. Brownfields and Beyond – Undercover at Neves Corvo, Portugal. Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration, pp. 291–304.
  36. WuJ., MilkereitB. and BoernerD.E.1995. Seismic imaging of the enigmatic Sudbury structure. Journal of Geophysical Research100, 4117–4130.
    [Google Scholar]
  37. YavuzS., KinkelaJ., DzunicA., PenneyM., NetoR., AraujoV.et al. 2015. Physical property analysis and preserved relative amplitude processed seismic imaging of volcanogenic massive sulfides – a case study from Neves–Corvo, Portugal. Geophysical Prospecting63, 798–812.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12861
Loading
/content/journals/10.1111/1365-2478.12861
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Data processing; Imaging; Seismics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error