1887
Volume 18, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In this study, we undertake a renewed investigation of up‐bent reflections seen in seismic time sections from the Baltic Sea, Bay of Kiel. These warped reflections stretch over the entire vertical extent of the sections, from Permian to Quaternary strata, and underlie tunnel valleys. Previous studies interpreted these structures as anticlines, explaining them together with adjacent faults and disrupted strata as the consequence of ice‐load‐induced salt tectonics. This conclusion would have influenced theories on how tunnel valleys formed. However, well data from tunnel valleys in other regions supported the interpretation of the up‐bent reflections as imaging artefacts (pull‐ups). A newly acquired long‐offset, multichannel seismic data set images all strata from Base Zechstein up to the seafloor. Owing to the length of the streamer and a shallow water depth, the data display significant moveout and refracted waves, allowing the application of different quantitative methods to investigate velocities. By generating partial‐offset sections, we reveal an offset dependence in the imaging of the up‐bent structures caused by a local, near‐surface high‐velocity zone. This also explains a smoothing of the up‐bending with depth in the seismic image. A velocity model gained by a travel‐time tomography shows positive velocity anomalies in the upper strata correlating with tunnel valleys resolved in the reflection images. A pre‐stack depth migration performed with a velocity model containing a high‐velocity zone results in a seismic image almost free of the observed up‐bent reflections. High‐frequency reflection seismic data confirm this result as it shows a detailed image of a tunnel valley with a phase‐reversed bottom reflection caused by the velocity inversion at the base of the high‐velocity valley fill deposits. Hence, there is consistent evidence that all up‐bent reflections in the Bay of Kiel are imaging artefacts (pull‐ups) that formed beneath tunnel valleys. A salt tectonic control on tunnel valley evolution is, consequently, not likely. This study is the first purely seismic data‐driven study that proves high‐velocity valley fill deposits. Our findings imply that extra care must be taken when interpreting reflection undulations as tectonic features where glacial deposits are present.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12122
2020-11-16
2024-04-27
Loading full text...

Full text loading...

References

  1. Al Hseinat, M. and Hübscher, C. (2014) Ice‐load induced tectonics controlled tunnel valley evolution – instances from the southwestern Baltic Sea. Quaternary Science Reviews, 97, 121–135.
    [Google Scholar]
  2. Al Hseinat, M. and Hübscher, C. (2017) Late Cretaceous to recent tectonic evolution of the north German basin and the transition zone to the Baltic shield/southwest Baltic Sea. Tectonophysics, 708, 28–55.
    [Google Scholar]
  3. Al Hseinat, M., Hübscher, C., Lang, J., Lüdmann, T., Ott, I. and Polom, U. (2016) Triassic to recent tectonic evolution of a crestal collapse graben above a salt‐cored anticline in the Glückstadt Graben/North German Basin. Tectonophysics, 680, 50–66.
    [Google Scholar]
  4. Bachmann, G.H., Voigt, T., Bayer, U., von Eynatten, H., Legler, B. and Littke, R. (2008) Depositional history and sedimentary cycles in the Central European Basin System. In: LittkeR., Bayer, U., Gajeswki, D. and Nelskamp, S. (Eds.) Dynamics of Complex Intracontinental Basins – The Central European Basin System, Chapter 4.1, Springer‐Verlag.
    [Google Scholar]
  5. Baldschuhn, R., Best, G. and Kockel, F. (1991) Inversion tectonics in the northwest German basin. Generation, accumulation and production of Europe's hydrocarbons. European Association of Petroleum Geoscientists, 1, 149–159.
    [Google Scholar]
  6. Benz, H.M., Chouet, B.A., Dawson, P.B., Lahr, J.C., Page, R.A. and Hole, J.A. (1996) Three‐dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. Journal of Geophysical Research: Solid Earth, 101(B4), 8111–8128.
    [Google Scholar]
  7. Bruun‐Petersen, J. (1987) Prækvartæroverfladen i Ribe amt, Dansk Geologisk Forening, Årsskrift for 1986, 35–40.
  8. BurVal Working Group (2006) Groundwater Resources in Buried Valleys – A Challenge for Geosciences. Hannover: Leibniz Institute for Applied Geosciences, 301pp.
    [Google Scholar]
  9. Butler, J.P. and Kolesar, R. (2013) 2D depth velocity analysis without tomography. GeoConvention 2013: Integration.
  10. Cofaigh, C.O. (1996) Tunnel valley genesis. Progress in Physical Geography, 20, 1–19.
    [Google Scholar]
  11. Ehlers, J., Meyer, K.‐D. and Stephan, H.‐J. (1984) The pre‐Weichselian glaciations of north‐west Europe. Quaternary Science Reviews, 3(1), 1–40.
    [Google Scholar]
  12. Gerok, D., Kaminskas, D. and Gibbard, P. (2017) Seismic velocity anomalies in the infilling of tunnel valleys: influence on the interpretation of seismic data. An example from western Lithuania. GFF, 139(4), 276–288.
    [Google Scholar]
  13. Hansen, M.B., Lykke‐Andersen, H., Dehghani, A., Gajeskwi, D., Hübscher, C., Olesen, M.et al. (2005) The Mesozoic–Cenozoic structural framework of the Bay of Kiel area, western Baltic Sea. International Journal of Earth Science, 94(5), 1070–1082.
    [Google Scholar]
  14. Hole, J.A. (1992) Nonlinear high‐resolution three‐dimensional seismic travel time tomography. Journal of Geophysical Research: Solid Earth, 97(B5), 6553–6562.
    [Google Scholar]
  15. Hübscher, C., Ahlrichs, N., Allum, G., Behrens, T., Bülow, J., Krawczyk, C.et al. (2017) Baltec‐cruise no. MSM52 – March 1–March 28, 2016 – Rostock (Germany) – Kiel (Germany). In: fr Ozeanographie, D.S. (ed.), MARIA S.MERIAN‐Berichte, MSM52.
    [Google Scholar]
  16. Hübscher, C. and Gohl, K. (2014) Reflection/refraction seismology. In: Harff, J., Meschede, M., Petersen, S. and Thiede, J. (Eds.) Encyclopedia of Marine Geosciences. Dordrecht: Springer‐Verlag.
    [Google Scholar]
  17. Hübscher, C., Lykke‐Andersen, H., Hansen, M.B. and Reicherter, K. (2004) Investigating the structural evolution of the western Baltic. EOS, 85(12), 115–115.
    [Google Scholar]
  18. Huster, H., Hübscher, C. and Seidel, E. (2020) Impact of Late Cretaceous to Neogene plate tectonics and Quaternary ice loads on supra‐salt deposits at Eastern Glückstadt Graben, North German Basin. International Journal of Earth Sciences. https://doi.org/10.1007/s00531-020-01850-8.
    [Google Scholar]
  19. Huuse, M. and Lykke‐AndersenH. (2000) Over‐deepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. Quaternary Science Reviews, 19, 1233–1253.
    [Google Scholar]
  20. Janszen, A., Spaak, M. and Moscariello, A. (2012) Effects of the substratum on the formation of glacial tunnel valleys: an example from the Middle Pleistocene of the southern North Sea Basin. Boreas, 41(4), 629–643.
    [Google Scholar]
  21. Jørgensen, F., Lykke‐Andersen, H., Sandersen, P.B., Auken, E. and Nørmark, E. (2003) Geophysical investigations of buried quaternary valleys in Denmark: an integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings. Journal of Applied Geophysics, 53(4), 215–228.
    [Google Scholar]
  22. Jørgensen, F. and Sandersen, P. (2004) Buried and open tunnel valleys in Denmark – erosion beneath multiple ice sheet. Quaternary Science Review, 25, 1339–1363.
    [Google Scholar]
  23. Kristensen, T.B. and Huuse, M. (2012) Multistage erosion and infill of buried Pleistocene tunnel valleys and associated seismic velocity effects. In: Huuse, M., Redfern, J., Le Heron, D.P., Dixon, R.J., Moscariello, A. and Craig, J. (Eds.) Glaciogenic Reservoirs and Hydrocarbon Systems. London: Geological Society, Special Publications, 368, 159–172.
    [Google Scholar]
  24. Lang, J., Böhner, U., Polom, U., Serangeli, J. and Winsemann, J. (2015) The Middle Pleistocene tunnel valley at Schöningen as a Paleolithic archive. Journal of Human Evolution, 89, 18–26.
    [Google Scholar]
  25. Lang, J., Hampel, A., Brandes, C. and Winsemann, J. (2014) Response of salt structures to ice‐sheet loading: implications for ice‐marginal and subglacial processes. Quaternary Science Reviews, 101, 217–233.
    [Google Scholar]
  26. Lehné, J. and Sirocko, F. (2010) Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig‐Holstein) derived by GIS‐based analysis of repeated precise leveling data. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 175–188.
    [Google Scholar]
  27. Lykke‐Andersen, H., Seidenkrantz, M.S. and Knudsen, K.L. (1993) Quaternary sequences and their relations to the pre‐Quaternary in the vicinity of Anholt, Kattegat. Scandinavia. Boreas, 22, 291–298.
    [Google Scholar]
  28. MacRae, R.A. and Christians, A.R. (2013) A reexamination of Pleistocene tunnel valley distribution on the central Scotian Shelf. Canadian Journal of Earth Sciences, 50(5), 535–544, https://doi.org/10.1139/cjes-2012-0057.
    [Google Scholar]
  29. Maystrenko, Y., Bayer, U., Brink, H.‐J. and Littke, R. (2008). The Central European Basin System – an overview. In: Littke, R., Bayer, U., Gajeswki, D. and Nelskamp, S. (Eds.) Dynamics of Complex Intracontinental Basins – The Central European Basin System, Chapter 2. Springer‐Verlag.
    [Google Scholar]
  30. Pharaoh, T., Dusar, M., Geluk, M., Kockel, F., Krawczyk, C., Krzywiec, P.et al. (2010) Tectonic evolution. In: Doornenbal, H. and Stevenson, A. (Eds.) Petroleum Geological Atlas of the Southern Permian Basin Area, Chapter 3. EAGE Publications.
    [Google Scholar]
  31. Paige, C.C. and Saunders, M.A. (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1), 43–71.
    [Google Scholar]
  32. Piotrowski, J.A. (1994) Tunnel‐valley formation in northwest Germany—geology, mechanisms of formation and subglacial bed conditions for the Bornhöved tunnel valley. Sedimentary Geology89(1–2), 107–141.
    [Google Scholar]
  33. Piotrowski, J.A. (1997) Subglacial hydrology in north‐western Germany during the last glaciation: groundwater flow, tunnel valleys and hydrological cycles. Quaternary Science Reviews, 16(2), 169–185.
    [Google Scholar]
  34. Podvin, P. and Lecomte, I. (1991) Finite difference computation of travel‐times in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International, 105(1), 271–284.
    [Google Scholar]
  35. Praeg, D. (2003) Seismic imaging of mid‐Pleistocene tunnel‐valleys in the North Sea Basin‐high resolution from low frequencies. Journal of Applied Geophysics, 53, 229–248.
    [Google Scholar]
  36. Rattas, M. (2007) Spatial distribution and morphological aspects of eskers and bedrock valleys in North Estonia: implications for the reconstruction of a subglacial drainage system under the Late Weichselian Baltic Ice Stream. Geological Survey of Finland, 45, 63–68.
    [Google Scholar]
  37. Salomonsen, I. (1993) Quaternary buried valley systems in the eastern North Sea. Unpublished PhD thesis, University of Copenhagen.
  38. Salomonsen, I. (1995) Origin of a deep buried valley system in Pleistocene deposits of the eastern central North Sea. Proceedings of the 2nd Symposium on: Marine Geology.Geology of the North Sea and Skagerrak, Geological Survey of Denmark, pp. 7–19.
    [Google Scholar]
  39. Sandersen, P. and Jørgensen, F. (2002) Kortlægning af begravede dale i Jyllandogpa° Fyn‐opdatering 2001–2002. 62 pp. De jysk‐fynskeamtersgrundvandssamarbejde. Vejle Amt, Water‐Tech. April 2002 (in Danish) (Download at https://www.buried-valleys.dk).
  40. Schwarz, C. (1996) Neue Befunde zur Verbreitung und Dimension pleistozaener Rinnensysteme auf dem deutschen Nordseeschelf. Geologisches Jahrbuch Reihe A, 233–244.
    [Google Scholar]
  41. Sirocko, F., Reicherter, K., Lehne, R., Hübscher, Ch., Winsemann, J. and Stackebrandt, W. (2008) Glaciation, salt and the present landscape (Chapter 4.5). In: Littke, R., Bayer, U., Gajewski, D. and Nelskamp, S. (Eds.) Dynamics of Complex Intercontinental Basins – The Central European Basin System. Springer‐Verlag, Berlin‐Heidelberg, 519, 234–245.
    [Google Scholar]
  42. Tryggvason, A. (1998) Seismic tomography: inversion for P‐ and S‐wave velocities (Doctoral dissertation, Acta Universitatis Upsaliensis).
  43. Tryggvason, A., Rögnvaldsson, S.T. and Flóvenz, O.G. (2002) Three‐dimensional imaging of the P‐and S‐wave velocity structure and earthquake locations beneath Southwest Iceland. Geophysical Journal International, 151(3), 848–866.
    [Google Scholar]
  44. Van der Vegt, P., Janszen, A. and Moscariello, A. (2012) Tunnel valleys: current knowledge and future perspectives. Geological Society, London, Special Publications, 368(1), 75–97.
    [Google Scholar]
  45. van Dijke, J.J. and VeldkampA. (1996) Climate‐controlled glacial erosion in the unconsolidated sediments of northwest Europe, based on a genetic model for tunnel valley formation. Earth Surface Processes and Landforms, 21, 327–340.
    [Google Scholar]
  46. Vidale, J. (1988) Finite‐difference calculation of travel times. Bulletin of the Seismological Society of America, 78(6), 2062–2076.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12122
Loading
/content/journals/10.1002/nsg.12122
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Interpretation; Near‐surface; Seismic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error