1887
Volume 16, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Amplitude level, duration, and spectral content of earthquake ground motions are strongly influenced by local soil conditions. Reliable estimation of site effects is, therefore, crucial in order to avoid damage to infrastructures and mitigate other losses. Traditional geophysical exploration techniques are restricted in urban environments due to the presence of anthropogenic noises causing low seismic signal‐to‐noise ratio and other logistical issues. These problems are even more critical when the maximum investigation depth extends to hundreds of metres.

The city of Girona, located in northeastern Spain, has seismic hazard represented by a peak ground acceleration value of 0.08 g for a return period of 500 years. The city was built at the confluence of four rivers, generating a complex surface geology with bedrock outcrops and the presence of stiff soils, soft soils, and also a volcanic basalt layer. This paper presents the results of the geophysical work, which was carried out in order to characterise the soil layers present in the urban area of Girona. All information obtained in this research will be useful in computing the amplification of ground motion and to perform microzonation studies. We have obtained the shear‐wave velocity profile in the study area using a combination of seismic noise array and multichannel analysis of surface waves techniques. Using the horizontal‐to‐vertical spectral ratio method, we have obtained the soil fundamental frequency. The combination of shear‐wave velocity and values of soil fundamental frequency provides a complete map of the bedrock topography. The expected velocity inversion due to the presence of shallow basalt flow has been targeted. Electrical resistivity tomography is found to be suitable to define the volcanic basalt thickness. This thickness value is used to constrain the inversion of surface wave dispersion curves and reduce shear‐wave velocity uncertainty. The new methodology overcomes the limitations that are typical to urban conditions and other geological complexities.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2018004
2018-12-18
2024-04-26
Loading full text...

Full text loading...

References

  1. AkiK.1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors, Tokyo University. Bulletin of Earthquake Research Institute25, 415–457.
    [Google Scholar]
  2. AstenM.W. and HenstridgeJ.D.1984. Array estimators and use of microseisms for reconnaissance of sedimentary basin. Geophysics49, 1828–1837.
    [Google Scholar]
  3. BardP.Y.1999. Microtremor measurements: a tool for site effect estimation? In: The effects of surface geology on seismic motion, (eds K.Irikura , K.Kudo , H.Okada and T.Sasatani , pp. 1251–1279. Balkema, Rotterdam 3.
    [Google Scholar]
  4. BardP.Y. and SESAME‐Team2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations‐measurements, processing and interpretations, SESAME European research project EVG1‐CT‐2000–00026, deliverable D23.12, ftp://ftp.geo.uib. no/pub/seismo/SOFTWARE/SESAME/USER‐GUIDELINES/SESAME‐HV‐User‐Guidelines.pdf. Accessed June 2015.
    [Google Scholar]
  5. BenjumeaB., MacauA., GabàsA., BellmuntF., FiguerasS. and CirésJ.2011. Integrated geophysical profiles and H/V microtremor measurements for subsoil characterization. Near Surface Geophysics9, 413–425.
    [Google Scholar]
  6. BignardiS., MantovaniA. and Abu ZeidN.2016. Open HVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion.Computers and Geosciences93, 103–113.
    [Google Scholar]
  7. Bonnefoy‐ClaudetS., BaizeS., BonillaL.F., Berge‐ThierryC., PastenC., CamposJ. et. al. 2009. Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements.Geophysics Journal International176, 925–937.
    [Google Scholar]
  8. CadetH., MacauA., BenjumeaB., BellmuntF. and FiguerasS.2011. From ambient noise recordings to site effect assessment: the case study of Barcelona microzonation.Soil Dynamics and Earthquake Engineering31, 271–281.
    [Google Scholar]
  9. CastellaroS. and MulargiaF.2009. The effect of velocity inversion on H/V.Pure and Applied Geophysics166, 567–592.
    [Google Scholar]
  10. ClaerboutJ.F. and MuirF.1973. Robust modeling with erratic data.Geophysics38, 826–844.
    [Google Scholar]
  11. DeGroot‐HedlinC. and ConstableS.1990. Occam's inversion to generate smooth, two‐dimensional models from magnetotelluric data.Geophysics55, 1613–1624.
    [Google Scholar]
  12. DelgadoJ., López CasadoC., EstévezA., GinerJ., CuencaA. and MolinaS.2000. Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool.Journal of Applied Geophysics45, 19–32.
    [Google Scholar]
  13. Di GiulioG., GaudiosiI., CaraF., MilanaG. and TalliniM.2014. Shear‐wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L'Aquila.Geophysical Journal International198, 848–866.
    [Google Scholar]
  14. Dirección General de Protección Civil
    Dirección General de Protección Civil1997. Directriz básica de planifi‐cación de Protección Civil ante el riesgo sísmico. Imprenta Nacional del Boletin Oficial del Estado, Madrid.
    [Google Scholar]
  15. FähD., KindF. and GiardiniD.2001. A theoretical investigation of average H/V ratios.Geophysical Journal International145, 535–549.
    [Google Scholar]
  16. FotiS., HollenderF., GarofaloF., AlbarelloD., AstenM., BardP.Y. et al. 2017. Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project.Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518–017‐0206‐7.
    [Google Scholar]
  17. GabàsA., MacauA., BenjumeaB., BellmuntF., FiguerasS. and VilàM.2014. Combination of geophysical methods to support urban geological mapping.Surveys in Geophysics35(4), 983–1002.
    [Google Scholar]
  18. GarofaloF., FotiS., HollenderF., BardP.Y, CornouC., CoxB.R. et al. 2016. InterPACIFIC project: comparison of invasive and non‐invasive methods for seismic site characterization. Part I: intra‐comparison of surface wave methods.Soil Dynamics and Earthquake Engineering82, 222–240.
    [Google Scholar]
  19. García‐JerezA., Pi ña‐FloresJ., Sánchez‐SesmaF. J., LuzónF. and PertonM.2016. A computer code for forward computation and inversion of the H/V spectral ratio under the diffuse field assumption.Computers and Geosciences97, 67–78.
    [Google Scholar]
  20. GoulaX. and the SISPYR team2010. Earthquake information system in the Pyrenees—SISPYR Project. 32nd European Seismological Commission general assembly, Montpellier, France, September 6–10.
    [Google Scholar]
  21. HorikeM.1985. Inversion of phase velocity of long‐period microtremors to the S‐wave‐velocity structure down to the basement in urbanized areas.Journal of Physics of the Earth33, 59–96.
    [Google Scholar]
  22. Ibs‐vonSeht M. and WohlenbergJ.1999. Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America89, 250–259.
    [Google Scholar]
  23. ICC
    ICC2006. Mapa geologic de Catalunya 1:25000 (sheet Gironès).http://www.icgc.cat
  24. Instituto Nacional de Estadística
    Instituto Nacional de Estadística2015. http://www.ine.es
  25. KühnD., OhrnbergerM. and DahmT.2011. Imaging a shallow salt diaper using ambient seismic vibration beneath the densely built‐up city area of Hamburg, Northern Germany.Journal of Seismology15(3), 507–531.
    [Google Scholar]
  26. LacossR.T., KellyE.J. and ToksözM.N.1969. Estimation of seismic noise structure using arrays.Geophysics34, 21–38.
    [Google Scholar]
  27. LermoJ. and Chávez‐GarcíaF.J.1993. Site effect evaluation using spectral ratios with only one station.Bulletin of the Seismological Society of America83, 1574–1594.
    [Google Scholar]
  28. LeytonF., RuizS., SepulvedaS.A., ContrerasJ.P., RebolledoS. and AstrozaM.2013. Microtremors' HVSR and its correlation with surface geology and damage observed after the 2010 Maule earthquake (Mw 8.8) at Talca and Curico, Central Chile.Engineering Geology161, 26–33.
    [Google Scholar]
  29. LokeM.H.2016. Rapid 2‐D resistivity & IP inversion using the least‐squares method.Geotomo Software. Manual.
    [Google Scholar]
  30. LokeM.H. and BarkerR.D.1996. Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method.Geophysical Prospecting44, 131–152.
    [Google Scholar]
  31. LokeM.H. and DahlinT.2002. A comparison of the Gauss‐Newton and quasi‐Newton methods in resistivity imaging inversion.Journal of Applied Geophysics49, 149–162.
    [Google Scholar]
  32. MacauA., BenjumeaB., GabàsA., FiguerasS. and VilàM.2015. The effect of shallow quaternary deposits on the shape of H/V spectral ratio.Surveys in Geophysics36(1), 185–208.
    [Google Scholar]
  33. NavarroM., García‐JerezA., AlcaláF.J., VidalF. and EnomotoT.2014. Local site effect microzonation of Lorca town (SE Spain). Bulletin of Earthquake Engineering12, 1933–1959.
    [Google Scholar]
  34. NCSE‐02 2002
    NCSE‐02 2002 . Normativa de Construcción Sismorresistente Española. Comisión Permanente de Normas Sismorresistentes, Real Decreto 997/2002. Boletín Oficial del Estado No. 244 del 11 de octubre de2002, España.
    [Google Scholar]
  35. OhoriM., NobataA. and WakamatsuK.2002. A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays.Bulletin of the Seismological Society of America92, 2323–2332.
    [Google Scholar]
  36. OkadaH.2003. The microtremor survey method: geophysical monograph series, no. 12.Society of Exploration Geophysicists.
    [Google Scholar]
  37. OliveraC., RedondoE., LambertJ., RieraA. and RocaA.2006. Els terratrèmols dels segles XIV i XV a Catalunya, Institut Cartogràfic de Catalunya, Barcelona. (In Catalan, with a shortened version in English).
    [Google Scholar]
  38. O'NeillA. and MatsuokaT.2005. Dominant higher surface‐wave modes and possible inversion pitfalls.Journal of Environmental & Engineering Geophysics10(2), 185–201.
    [Google Scholar]
  39. ParolaiS., BormannP. and MilkereitC.2002. New relationships between Vs, thickness of sediments and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany).Bulletin of the Seismological Society of America92, 2521–2527.
    [Google Scholar]
  40. PousJ., Solé SugrañesLL. and Badiella, P.1990. Estudio geoeléctrico de la depresión de la Selva.Acta Geologica Hispanica25(4), 261–269.
    [Google Scholar]
  41. RobertsJ.C. and AstenM.W.2004. Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method.Exploration Geophysics35, 14–18.
    [Google Scholar]
  42. Sanchez‐SesmaF.J, RodriguezM., Iturrarán‐ViverosU., LuzónF., CampilloM., MargerinL. et al. 2011. A Theory for microtremor H/V spectral ratio: application for a layered medium. Geophysical Journal International186, 221–225.
    [Google Scholar]
  43. SasakiY.1992. Resolution of resistivity tomography inferred from numerical simulation.Geophysical Prospecting40, 453–464.
    [Google Scholar]
  44. SatohT., HayakawaT., OshimaM., KawaseH., MatsushimaS., NagashimaF. et al. 2014. Site effects on large ground motions at KiK‐net Iwase Station IBRH11 during the 2011 Tohoku Earthquake.Bulletin of the Seismological Society of America104(2), 653–668.
    [Google Scholar]
  45. SilvesterP.P. and FerrariR.L.1990. Finite Elements for Electrical Engineers, 2nd edn. Cambridge, UK:Cambridge University Press.
    [Google Scholar]
  46. SinghS.K., LermoJ., DominguezT., OrdazM., EspinosaJ.M., MenaE. et al. 1988. The Mexico earthquake of September 19, 1985—A study of seismic waves in the valley of Mexico with respect to a hill zone site.Earthquake Spectra4, 653–73.
    [Google Scholar]
  47. UebayashiH.2003. Extrapolation of irregular subsurface structures using the horizontal‐to‐vertical ratio of long‐period microtremors.Bulletin of the Seismological Society of America93, 570–582.
    [Google Scholar]
  48. WatheletM.2005. Array recordings of ambient vibrations: surface‐wave inversion. PhD thesis, Université de Liège, Belgium.
    [Google Scholar]
  49. WatheletM., JongmansD. and OhrnbergerM.2004. Surface wave inversion using a direct search algorithm and its application to ambient vibration measurements.Near Surface Geophysics2, 211–221.
    [Google Scholar]
  50. WatheletM., JongmansD., OhrnbergerM. and Bonnefoy‐ClaudetS.2008. Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion.Journal of Seismology12, 1–19.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2018004
Loading
/content/journals/10.3997/1873-0604.2018004
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error