1887

Abstract

Well operators use advanced downhole telemetry systems to monitor the flow rate, temperature, and pressure inside the well. The wired telemetry tools are currently popular in the industry although these tools have cost, maintenance, and reliability issues. Acoustic waves that propagate by vibrating the pipe’s body inside the well were recently considered as an alternative technology. However, the bottom segment of the production tubing is encased in concrete in many wells; a previous work showed that concrete segments attenuate the acoustic waves to impractical levels, which limits the applications of this mode of propagation. As an alternative to vibrating the tubing body when there is a concrete segment over the pipe, this work investigates the use of the production tubing’s interior as a communication medium for the acoustic waves. A testbed was designed using five segments of 7-inch production tubing to form a pipe string, a speaker to generate the acoustic waves, and a directive microphone to receive the acoustic waves propagating inside the pipe string. To study the effect of cemented pipes on acoustical wave propagation, the third pipe segment was encased in concrete. Input frequencies from 100 Hz to 2000 Hz were investigated; wave measurements were taken along the pipe string, and measurements were analyzed to extract information about the behavior of the acoustic channel. This work shows that acoustic waves are not affected by the presence of the concrete segment. Low-frequency acoustic waves experience very little attenuation as they propagate through the interior of the pipe string, signal dispersion is not an issue for most frequencies, and delay spread measures increase as the acoustic waves propagate down the pipe. This work advises that acoustic-wave technology can be a promising cost-effective and reliable solution for wireless downhole communication systems. Technical contributions include: characterizing the channel response to different input frequencies along the pipe string, investigating the power spectral density and signal-to-noise ratio measures, and studying the time dispersion parameters of the channel.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609-pdb.395.IPTC-17556-MS
2014-01-19
2024-04-26
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609-pdb.395.IPTC-17556-MS
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error