1887
PDF

Abstract

Summary

Understanding thermal and structural evolution of sedimentary basin is a key to assessing the hydrocarbon prospect. In the common approach to reconstruction of this evolution, a priori knowledge of thinning factors and paleobathymetry is required (while necessary data is commonly not available), sub-basin crust and mantle lithosphere evolution is omitted, and information about basal heat flow (it is usually getting from published heat flow maps, while this data is highly unreliable) is used as a boundary condition. Automatic correction of the prescribed heat flow is performed to get a good matching of modeling results with measured present-day temperature and maturity indicators. As a result, the approach gives multiple solutions and leads to fluctuations in temperature and maturity without proper physical/geological justification. There is an alternative approach to thermal reconstruction, resolving simultaneously for lithosphere and sedimentary basin processes. It involves an inverse algorithm, which iteratively updates crustal- and mantle-thinning factors and paleowater depth until the input stratigraphy is fitted to desired accuracy. The potential of this approach is demonstrated through comprehensive study of a transect across the West Siberian basin. Different geological scenario was considered, parametric study on key parameters was done, and the thermal blanketing effect of sediments was demonstrated.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702248
2017-09-11
2022-05-19
Loading full text...

Full text loading...

/deliver/fulltext/2214-4609/2017/43833.html?itemId=/content/papers/10.3997/2214-4609.201702248&mimeType=html&fmt=ahah

References

  1. ГалушкинЮ.И.
    [2007] Моделирование осадочных бассейнов и оценка их нефтегазогосности. М.: Научный мир, 456 с.
  2. ГалушкинЮ.И., Эль Магхби, А., Эль Гтлави, М.
    [2014] Термический режим и амплитуда растяжения литосферы бассейна Сирт, Ливия – численные оценки в системе моделирования плоских бассейнов. Физика Земли, 2014, № 1, с. 75–88.
    [Google Scholar]
  3. МусихинК.В., ШуваевА.О., БогдановО.А., КостенкоО.В., ЧехонинЕ.М., ПешковГ.А., МясниковА.В.
    [2017] Учет влияния теплопроводности горных пород на эволюцию НГ-систем на примере баженовской формации Западной Сибири. Международная научно-практическая конференция «ГеоСочи-2017».
    [Google Scholar]
  4. МясниковА.В., ПодладчиковЮ.Ю. и ПоповЮ.А.
    [2015] Повышение точности моделирования термальной эволюции при прогнозе образования углеводородов. Труды конференции EAGE «Геомодель 2015», Россия, г. Геленджик.
    [Google Scholar]
  5. ПоповЮ.А.
    [2015] Проблема качества исходных петротеплофизических и геотермических данных при моделировании осадочных бассейнов и нефтегазоносных систем. Труды конференции EAGE «Геомодель-2015», Россия, г. Геленджик.
    [Google Scholar]
  6. Poplavskii’K., PodladchikovYu., StephensonR.
    [2001] Two-dimensional inverse modeling of sedimentary basin subsidence. J. Geophys. Res., 06 (b4), p. 6657–6671.
    [Google Scholar]
  7. RupkeL.H., SchmalholzS.M., SchmidE.H., PodladchikovY.
    [2008], Automated thermotectonostratigraphic basin reconstruction: Viking Graben case study, AAPG Bull., 92, no. 3, pp. 309–326.
    [Google Scholar]
  8. Theissen, S., Rüpke, L.H.
    , [2010] Feedbacks of sedimentation on crustal heat flow: New insights from the Vøring Basin, Norwegian Sea. Basin Research, 22(6): 976–990.
    [Google Scholar]
  9. GalushkinYU.I.
    [2007] Modelirovaniye osadochnykh basseynov i otsenka ikh neftegazogosnosti. M.: Nauchnyy mir, 456 s.
  10. GalushkinYU.I., El’ Magkhbi, A., El’ Gtlavi, M.
    [2014] Termicheskiy rezhim i amplituda rastyazheniya litosfery basseyna Sirt, Liviya – chislennyye otsenki v sisteme modelirovaniya ploskikh basseynov. Fizika Zemli, 2014, № 1, s. 75–88.
    [Google Scholar]
  11. MusikhinK.V., ShuvayevA.O., BogdanovO.A., KostenkoO.V., ChekhoninE.M., PeshkovG.A., MyasnikovA.V.
    [2017] Uchet vliyaniya teploprovodnosti gornykh porod na evolyutsiyu NG-sistem na primere bazhenovskoy formatsii Zapadnoy Sibiri. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «GeoSochi-2017».
    [Google Scholar]
  12. MyasnikovA.V., PodladchikovYU.YU. i PopovYU.A.
    [2015] Povysheniye tochnosti modelirovaniya termal’noy evolyutsii pri prognoze obrazovaniya uglevodorodov. Trudy konferentsii EAGE «Geomodel’ 2015», Rossiya, g. Gelendzhik.
    [Google Scholar]
  13. PopovYU.A.
    [2015] Problema kachestva iskhodnykh petroteplofizicheskikh i geotermicheskikh dannykh pri modelirovanii osadochnykh basseynov i neftegazonosnykh sistem. Trudy konferentsii EAGE «Geomodel’-2015», Rossiya, g. Gelendzhik.
    [Google Scholar]
  14. Poplavskii’K., PodladchikovYu., StephensonR.
    [2001] Two-dimensional inverse modeling of sedimentary basin subsidence. J. Geophys. Res., 06 (b4), p. 6657–6671.
    [Google Scholar]
  15. RupkeL.H., SchmalholzS.M., SchmidE.H., PodladchikovY.
    [2008], Automated thermotectonostratigraphic basin reconstruction: Viking Graben case study, AAPG Bull., 92, no. 3, pp. 309–326.
    [Google Scholar]
  16. Theissen, S., Rüpke, L.H.
    , [2010] Feedbacks of sedimentation on crustal heat flow: New insights from the Vøring Basin, Norwegian Sea. Basin Research, 22(6): 976–990.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702248
Loading
/content/papers/10.3997/2214-4609.201702248
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error