1887

Abstract

Summary

Successfully storing CO2 underground requires a good understanding of the subsurface at the storage site, and its robust representation in geological models. Geological models, and related simulations, provide important quantitative information on critical parameters for the optimal utilisation of the subsurface, such as storage capacity, fracturing pressure, optimal injection rates and drilling strategy. In the majority of cases, such models are constructed on the basis of seismic and well data, and history matched using production and injection data. On the Arctic archipelago of Svalbard, however, a siliciclastic unit ca. 700–1000 m deep is considered for CO2 storage, and its outcrop equivalents are exposed 15–20 km from the planned injection site. These outcrops provide an important insight into the structural and sedimentological heterogeneity of the target reservoir. The use of modern tools such as photogrammetric digital outcrops enhances our ability to obtain relevant quantitative data for the geomodel. We here present an integrated characterization of the UNIS CO2 project target reservoir, combining well, core, seismic, EM and outcrop data, to build a realistic model of the planned CO2 storage site.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201702452
2017-11-11
2020-07-05
Loading full text...

Full text loading...

References

  1. Agisoft, L.
    [2014] Agisoft PhotoScan User Manual: Professional Edition. Version.
    [Google Scholar]
  2. Avseth, P., Mukerji, T. and Mavko, G.
    [2010] Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge university press.
    [Google Scholar]
  3. Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T. and Bangash, H. A.
    [2014] Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology69, 163–178.
    [Google Scholar]
  4. Braathen, A., Bælum, K., Christiansen, H. H., Dahl, T., Eiken, O., Elvebakk, H., Hansen, F., Hanssen, T. H., Jochmann, M., Johansen, T. A., Johnsen, H., Larsen, L., Lie, T., Mertes, J., Mørk, A., Mørk, M. B., Nemec, W., Olaussen, S., Oye, V., Rød, K., Titlestad, G. O., Tveranger, J. and Vagle, K.
    [2012] The Longyearbyen CO2 Lab of Svalbard, Norway—initial assessment of the geological conditions for CO2 sequestration. Norwegian Journal of Geology, 353–376.
    [Google Scholar]
  5. Casini, G., Hunt, D., Monsen, E. and Bounaim, A.
    [2016] Fracture characterization and modeling from virtual outcrops. AAPG Bulletin100(1), 41–61.
    [Google Scholar]
  6. Gale, J. F., Laubach, S. E., Olson, J. E., Eichhubl, P. and Fall, A.
    [2014] Natural fractures in shale: A review and new observations. AAPG Bulletin98(11), 2165–2216.
    [Google Scholar]
  7. Henriksen, E., Ryseth, A. E., Larssen, G. B., Heide, T., Rønning, K., Sollid, K. and Stoupakova, A. V.
    [2011] Chapter 10 Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. Arctic Petroleum Geology, A. M.Spencer, A. F.Embry, D. L.Gautier, A. V.Stoupakova and K.Sørensen (eds.), 163–195. Geological Society, Memoir #35, London.
    [Google Scholar]
  8. Mørk, M. B. E.
    [2013] Diagenesis and quartz cement distribution of low-permeability Upper Triassic –Middle Jurassic reservoir sandstones, Longyearbyen CO2 lab well site in Svalbard, Norway. AAPG Bulletin97, 577–596.
    [Google Scholar]
  9. Ogata, K., Senger, K., Braathen, A. and Tveranger, J.
    [2014] Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA). Journal of Structural Geology66, 162–187.
    [Google Scholar]
  10. Ogata, K., Senger, K., Braathen, A., Tveranger, J. and Olaussen, S.
    [2014] Fracture systems and meso-scale structural patterns in the siliciclastic Mesozoic reservoir-caprock succession of the Longyearbyen CO2 Lab project: implications for geologic CO2 sequestration on Central Spitsbergen, Svalbard. Norwegian Journal of Geology94, 121–154.
    [Google Scholar]
  11. Schaaf, N., Senger, K., Mulrooney, M., Ogata, K., Braathen, A. and Olaussen, S.
    [2017] Towards characterization of natural fractures in a caprock shale: an integrated borehole-outcrop study of the Agardhfjellet For-mation, Svalbard, Arctic Norway. NGF Vinterkonferansen, Oslo, Norway, 9–11January2017.
    [Google Scholar]
  12. Senger, K., Tveranger, J., Braathen, A., Olaussen, S., Ogata, K. and Larsen, L.
    [2015] CO2 storage resource estimates in unconventional reservoirs: insights from a pilot-sized storage site in Svalbard, Arctic Norway. Environmental Earth Sciences73, 3987–4009.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201702452
Loading
/content/papers/10.3997/2214-4609.201702452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error