1887

Abstract

Summary

Accurate estimates of compositional-dependent microemulsion viscosities are critical to model flow in surfactant-polymer floods. Microemulsions are mixtures of oil, water and surfactant with complex internal structures and interaction forces between components. This paper develops a physics-based microemulsion viscosity model at low shear rate for compositional variations within a fixed ternary surfactant-brine-oil system. Our proposed model generates continuous viscosities for the entire compositional space with honored physical limits. First, binary water-surfactant and oil-surfactant viscosities variations along the axes of the ternary diagram are captured. Second, viscosity peaks at the “percolation locus” are reproduced, where the percolation locus is defined by hypothetical single-phase compositions within the ternary diagram. Last, end-point viscosities of pure water and oil on the apex of the ternary diagram are honored. The results show that the new model fits and predicts single phase microemulsion viscosities in ternary compositional space with acceptable accuracy (R2> 0.75) for a challenging three pseudocomponent system of isooctane, decane, and cyclohexane mixed with water and surfactant. The first-of-its-kind viscosity model can be coupled with any microemulsion phase behavior equations of state, such as that based on HLD-NAC.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201802167
2018-09-03
2024-04-28
Loading full text...

Full text loading...

References

  1. BennettK.E., HatfieldJ.C., DavisH.T., MacoskoC.W., ScrivenL.E.
    [1982] Viscosity and Conductivity of Microemulsions. In: RobbI.D. (eds) Microemulsions. Springer, Boston, MA
    [Google Scholar]
  2. Bennett, K. E.
    [1985]. Microemulsion phase behavior and rheology (Vol. 3). University of Minnesota.
    [Google Scholar]
  3. Boned, C., Peyrelasse, J., and Saidi, Z.
    [1993]. Dynamic percolation of spheres in a continuum: The case of microemulsions. Physical Review E, 47(1), 468.
    [Google Scholar]
  4. Bourrel, M., and Schechter, R. S.
    [2010]. Microemulsions and related systems: formulation, solvency, and physical properties. Editions Technip.
    [Google Scholar]
  5. Buckley, S. E., and Leverett, M.
    [1942]. Mechanism of fluid displacement in sands. Transactions of the AIME, 146(01), 107–116.
    [Google Scholar]
  6. Davis, H. T.
    [1994]. Factors determining emulsion type: Hydrophile—lipophile balance and beyond. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 91, 9–24.
    [Google Scholar]
  7. Einstein, A.
    [1906]. A new determination of molecular dimensions. Ann. Phys., 19, 289–306.
    [Google Scholar]
  8. Gradzielski, M., and Hoffmann, H.
    [1999]. Rheological properties of microemulsions. Handbook of microemulsion science and technology, 11, 357–386.
    [Google Scholar]
  9. Healy, R. N., Reed, R. L., and Stenmark, D. G.
    [1976]. Multiphase microemulsion systems. Society of Petroleum Engineers Journal, 16(03), 147–160.
    [Google Scholar]
  10. Heitmiller, R. F., Naar, R. Z., and Zabusky, H. H.
    [1964]. Effect of homogeneity on viscosity in capillary extrusion of polyethylene. Journal of Applied Polymer Science, 8(2), 873–880.
    [Google Scholar]
  11. Hirasaki, G. J., Miller, C. A., and Puerto, M.
    [2008]. Recent advances in surfactant EOR. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
    [Google Scholar]
  12. Huh, C.
    [1979]. Interfacial tensions and solubilizing ability of a microemulsion phase that coexists with oil and brine. Journal of Colloid and Interface Science, 71(2), 408–426.
    [Google Scholar]
  13. Khodaparast, P., and Johns, R. T.
    [2018]. A Continuous and Predictive Viscosity Model Coupled to a Microemulsion Equation-Of-State. In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers.
    [Google Scholar]
  14. Khorsandi, S., and Johns, R. T.
    [2016]. Robust flash calculation algorithm for microemulsion phase behavior. Journal of Surfactants and Detergents, 19(6), 1273–1287.
    [Google Scholar]
  15. Kiran, S. K., and Acosta, E. J.
    [2010]. Predicting the morphology and viscosity of microemulsions using the HLD-NAC model. Industrial and Engineering Chemistry Research, 49(7), 3424–3432.
    [Google Scholar]
  16. Krieger, I. M., and Dougherty, T. J.
    [1959]. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology, 3(1), 137–152.
    [Google Scholar]
  17. Lake, L. W., Johns, R. T., Rossen, W. R., and Pope, G. A.
    [2014]. Fundamentals of enhanced oil recovery.
    [Google Scholar]
  18. Lee, S. I., Song, Y., Noh, T. W., Chen, X. D., & Gaines, J. R.
    [1986]. Experimental observation of nonuniversal behavior of the conductivity exponent for three-dimensional continuum percolation systems. Physical Review B, 34(10), 6719.
    [Google Scholar]
  19. Lin, C. C.
    [1979]. A mathematical model for viscosity in capillary extrusion of two-component polyblends. Polymer Journal, 11(3), 185.
    [Google Scholar]
  20. Mathew, C., Saidi, Z., Peyrelasse, J., and Boned, C.
    [1991]. Viscosity, conductivity, and dielectric relaxation of waterless glycerol∼sodium bis (2-ethylhexyl) sulfosuccinate∼isooctane microemulsions: The percolation effect. Physical Review A, 43(2), 873.
    [Google Scholar]
  21. McLachlan, D. S., Blaszkiewicz, M., & Newnham, R. E.
    [1990]. Electrical resistivity of composites. Journal of the American Ceramic Society, 73(8), 2187–2203.
    [Google Scholar]
  22. Mitchell, D. J., Tiddy, G. J., Waring, L., Bostock, T., and McDonald, M. P.
    [1983]. Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points). Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 79(4), 975–1000.
    [Google Scholar]
  23. Moha-Ouchane, M., Peyrelasse, J., and Boned, C.
    [1987]. Percolation transition in microemulsions: Effect of water-surfactant ratio, temperature, and salinity. Physical Review A, 35(7), 3027.
    [Google Scholar]
  24. Mooney, M.
    [1951]. The viscosity of a concentrated suspension of spherical particles. Journal of colloid science, 6(2), 162–170.
    [Google Scholar]
  25. Moulik, S. P., and Paul, B. K.
    [1998]. Structure, dynamics and transport properties of microemulsions.Advances in Colloid and Interface science78(2), 99–195.
    [Google Scholar]
  26. Naceur, I. B., Guettari, M., Kassab, G., and Tajouri, T.
    [2012]. Simple-complex fluid transition in microemulsions.Journal of Macromolecular Science, Part B51(11), 2171–2182.
    [Google Scholar]
  27. Pan, X., and Bhatia, S. R.
    [2008]. Effect of counterion substitution on the viscosity anomaly in AOT microemulsions.Journal of colloid and interface science327(1), 152–156.
    [Google Scholar]
  28. Paul, B. K., and Moulik, S. P.
    [2000]. The viscosity behaviours of microemulsions: an overview.
    [Google Scholar]
  29. Peyrelasse, J., and Boned, C.
    [1990]. Conductivity, dielectric relaxation, and viscosity of ternary microemulsions: the role of the experimental path and the point of view of percolation theory. Physical Review A, 41(2), 938.
    [Google Scholar]
  30. Peyrelasse, J., Moha-Ouchane, M., and Boned, C.
    [1988]. Viscosity and the phenomenon of percolation in microemulsions. Physical Review A, 38(8), 4155.
    [Google Scholar]
  31. Pope, G. A., and Nelson, R. C.
    [1978]. A chemical flooding compositional simulator.Society of Petroleum Engineers Journal18(05), 339–354.
    [Google Scholar]
  32. Quemada, D., and Langevin, D.
    [1989]. A viscosity model of Winsor microemulsions. In Surfactants in Solution (pp. 123–138). Springer, Boston, MA.
    [Google Scholar]
  33. Roscoe, R.
    [1952]. The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3(8), 267.
    [Google Scholar]
  34. Rossen, W. R., Brown, R. G., Davis, H. T., Prager, S., and Scriven, L. E.
    [1982]. Thermodynamic modeling of pseudoternary phase behavior.Society of Petroleum Engineers Journal22(06), 945–961.
    [Google Scholar]
  35. Rubenstein, M., & Colby, R. H.
    [2003]. Polymer Physics: Oxford University Press.
    [Google Scholar]
  36. Safran, S. A., and Turkevich, L. A.
    [1983]. Phase diagrams for microemulsions. Physical review letters, 50(24), 1930.
    [Google Scholar]
  37. Salager, J. L., Andérez, J. M., Briceño, M. I., de Sánchez, M. P., and de Gouveia, M. R.
    [2002]. Emulsification yield related to formulation and composition variables as well as stirring energy. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 25(3).
    [Google Scholar]
  38. Simha, R.
    [1950]. The concentration dependence of viscosities in dilute solutions.Journal of Colloid Science5(4), 386–392.
    [Google Scholar]
  39. Skauge, A., and Fotland, P.
    [1990]. Effect of pressure and temperature on the phase behavior of microemulsions.SPE Reservoir Engineering5(04), 601–608.
    [Google Scholar]
  40. Stauffer, D.
    [1979]. Scaling theory of percolation clusters.Physics reports54(1), 1–74.
    [Google Scholar]
  41. Tagavifar, M., Herath, S., Weerasooriya, U. P., Sepehrnoori, K., and Pope, G.
    [2017]. Measurement of microemulsion viscosity and its implications for chemical enhanced oil recovery. SPE Journal.
    [Google Scholar]
  42. Taylor, G. I.
    [1932]. The viscosity of a fluid containing small drops of another fluid.Proceedings of the Royal Society of London. Series A138(834), 41–48.
    [Google Scholar]
  43. Tiddy, G. J.
    [1980]. Surfactant-water liquid crystal phases.Physics reports57(1), 1–46.
    [Google Scholar]
  44. Torrealba, V. A., and Johns, R. T.
    [2017]. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures.Langmuir33(47), 13604–13614.
    [Google Scholar]
  45. Utracki, L. A., Catani, A. M., Bata, G. L., Kamal, M. R., and Tan, V.
    [1982]. Melt rheology of blends of semicrystalline polymers. I. Degradation and viscosity of poly (ethylene terephthalate)–polyamide-6, 6 mixtures. Journal of Applied Polymer Science, 27(6), 1913–1931.
    [Google Scholar]
  46. Wang, S. C., Wei, T. C., Chen, W. B., and Tsao, H. K.
    [2004]. Effects of surfactant micelles on viscosity and conductivity of poly (ethylene glycol) solutions.The Journal of chemical physics120(10), 4980–4988.
    [Google Scholar]
  47. Winsor, P. A.
    [1948]. Hydrotropy, solubilisation and related emulsification processes. Transactions of the Faraday Society, 44, 376–398.
    [Google Scholar]
  48. Yamamoto, S., & Matsuoka, T.
    [1994]. Viscosity of dilute suspensions of rodlike particles: A numerical simulation method.The Journal of chemical physics100(4), 3317–3324.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201802167
Loading
/content/papers/10.3997/2214-4609.201802167
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error