1887

Abstract

Summary

Faults are objects interpreted from seismic data that are often difficult to characterize. Not only the type of a fault can appear different depending on the domain the modeler is working on (time or depth), but accurate shape mapping often extends below the level of coherent seismic data. This proves especially impactful when we consider that simple errors in the fault-network characterization can render a subsurface model useless in terms of its flow properties and provide erroneous values for volumes of reserves. Nevertheless, in absence of proper technology, depth conversion workflows do not account for fault uncertainties, instead relying on a single deterministic interpretation. This paper presents a new methodology that considers positional fault uncertainty in time-to-depth conversion workflows. By considering different realizations of a fault, the target surface is dynamically adapted to this new position and can be used to update further volumetric computations. The proposed methodology can be fully automated and results in a more complete exploration of the uncertainty space regarding fault interpretation.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900743
2019-06-03
2020-04-09
Loading full text...

Full text loading...

References

  1. Sibson, R.H.
    (1977), “Fault rocks and fault mechanisms”, Journal of the Geological Society 1977; v. 133; p. 191–213, doi:10.1144/gsjgs.133.3.0191
    https://doi.org/10.1144/gsjgs.133.3.0191 [Google Scholar]
  2. T.Manzocchi, J. N.Carter, A.Skorstad, B.Fjellvoll, K. D.Stephen, J. A.Howell, J. D.Matthews, J. J.Walsh, M.Nepveu, C.Bos, J.Cole, P.Egberts, S.Flint, C.Hern, L.Holden, H.Hovland, H.Jackson, O.Kolbjørnsen, A.MacDonald, P. A. R.Nell, K.Onyeagoro, J.Strand, A. R.Syversveen, A.Tchistiakov, C.Yang, G.Yielding, R. W.Zimmerman
    , (2008), “Sensitivity of the impact of geological uncertainty on production from faulted and unfaulted shallow-marine oil reservoirs: objectives and methods”, EAGE/Geological Society of London, Petroleum Geoscience, Vol. 14 2008, pp. 3–15
    [Google Scholar]
  3. MatthewsJ., CarterJ., StephenK., ZimmermanR., SkorstadA., ManzocchiT., HowellJ.
    , (2008), “Assessing the effect of geological uncertainty on recovery estimates in shallow-marine reservoirs: the application of reservoir enginnering to the SAIGUP project”, EAGE/Geological Society of London, Petroleum Geoscience, Vol. 14 2008, pp. 35–44
    [Google Scholar]
  4. Chautru, J.M, Nosjean-Gorgeu, N., Renard, D., Binet, H., Correia, P.
    (2018), “A Case Study of a New Time-Depth Conversion Workflow Designed for Optimizing Recovery” - Proceedings of the ECMOR XVI: 16th European Conference on the Mathematics of Oil Recovery, Barcelone
    [Google Scholar]
  5. BinetH., CorreiaP., Nosjean-GorgeuN., RenardD., GeffroyF., ChautruJ.M.
    (2018), “Proper Systemic Knowledge of Reservoir Volume Uncertainties in Depth Conversion”, Closing the Gap III – Advances in Applied Geomodeling for Hydrocarbon Reservoirs, October8–11, Lake Louise – Alberta (Canada)
    [Google Scholar]
  6. Thomas, J.M.
    1998. Estimation of ultimate recovery for UK oil fields: the results of the DTI questionnaire and a historical analysis. Petroleum Geoscience, 4, 157–163.
    [Google Scholar]
  7. Alcalde, J., Bond, C.E., Johnson, G., Ellis, J.F. & Butler, R.W.H.
    (2017), “Impact of seismic image quality on fault interpretation uncertainty”, GSA Today, vol. 27, no. 2, pp. 4–10. DOI: 10.1130/GSATG282A.1
    https://doi.org/10.1130/GSATG282A.1 [Google Scholar]
  8. Abdi, H. and Williams, L. J.
    (2010), “Principal component analysis.”WIREs Comp Stat, 2: 433–459. doi:10.1002/wics.101
    https://doi.org/10.1002/wics.101 [Google Scholar]
  9. HaralickR.M., SternbergS.R., ZhuangX.
    , (1987), “Image Analysis Using Mathematical Morphology”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Col. PAMI-9, July
    [Google Scholar]
  10. BarberC.B., DobkinD.P., HuhdanpaaH.
    , (1996), “The Quickhull Algorithm for Convex Hulls”, ACM Transactions on Mathematical Software, Vol.22, No.4, December 1996, Pages 469–483
    [Google Scholar]
  11. DelaunayB.
    , (1934). “Sur la sphère vide”. Bulletin de l’Académie des Sciences de l’URSS, Classe des sciences mathématiques et naturelles. 6: 793–800.
    [Google Scholar]
  12. LeeD.T., SchachterB.J.
    , (1980), “Two Algorithms for Constructing a Delaunay Triangulation”, International Journal of Computer and Information Sciences, Vol.9, No.3
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900743
Loading
/content/papers/10.3997/2214-4609.201900743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error