1887

Abstract

Summary

A 3D seismic cube of a successful and active geothermal field in the western part of Munich/Germany shows three main seismic facies types and the large scale depositional architecture. Borehole Image interpretation in carbonate reservoirs is very challenging. While fractures, faults and karst can often be recognized very well (especially if filled with conductive drilling mud), borehole image facies types are more difficult to distinguish. A case study from Upper Jurassic carbonates from a producing geothermal field shows the exceptional amount of detail visible in the borehole images (CMI). This enables the borehole image interpreter to compare the borehole image facies to a previously established facies atlas. The vertical change of borehole image facies allows to refine the sequence stratigraphic interpretation. The linke between seismic facies and borehole image facies allows to recognize genetically linked depositional sequences and delineate high permeable flow zones.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201901261
2019-06-03
2020-04-03
Loading full text...

Full text loading...

References

  1. Akbar, M., Petricola, M., Watfa, M., Badri, M., Charara, M., Boyd, A., Cassell, B., Nurmi, R., Delhomme, J.P., Grace, M., Kenyon, B., Roestenburg, J
    . [1995]. Classical interpretation problems: evaluation carbonates. Schlumberger Oilfield Review, 7, 38–57.
    [Google Scholar]
  2. Böhm, F., Savvatis, A., Steiner, U., SchneiderM., Koch, R
    . [2013]. Lithofazielle Reservoir-charakterisierung zur geothermischen Nutzung des Malm im Großraum München. Grundwasser, 18, 3–13.
    [Google Scholar]
  3. Chitale, V. D., Johnson, C., Entzminger, D. and Canter, L
    . [2010]. Application of a modern electrical borehole imager and a new image interpretation technique to evaluate the porosity and permeability in carbonate reservoirs: A case history from the Permian Basin, United States, in M.Pöppelreiter, ed., Dipmeter and borehole image log technology. AAPG Memoir, 92, 1–13.
  4. Gwinner, M.P.
    [1976]. Origin of the Upper Jurassic of the Swabian Alb. Contrib. Sedimentology, 5, 1–75.
    [Google Scholar]
  5. Geyer, O.F. and Gwinner, M.P
    . [1979]. Die Schwäbische Alb und ihr Vorland. Sammlung Geologischer Führer, 67, 1–271.
    [Google Scholar]
  6. Kerans, C. and Tinker, S.W
    . [1997]. Sequence stratigraphy and characterization of carbonate reservoirs. SEPM Short course notes, 40, 1–137.
    [Google Scholar]
  7. Leinfelder, R., Leinfelder, M., Krautter, M., Laternser, R., Nose, M., Schmid, D., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J.H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., and Lutherbacher, H
    . [1994]. The origin of Jurassic reefs: current research development and results. Facies, 31, 1–56.
    [Google Scholar]
  8. Leinfelder, R.R., Werner, W., Nose, M., Schmid, D.U., Krautter, M., Laternser, R., Takacs, M., Hartmann, D
    . [1996]. Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the Late Jurassic. Göttinger Arbeiten zur Geologie und Palaentologie, 2, 227–248.
    [Google Scholar]
  9. Meyer, R.K.F.
    [1994]. „Moosburg 4“, die erste Kernbohrung durch den Malm unter der bayerischen Molasse. Erlanger geologische Abhandlungen, 123, 51–81.
    [Google Scholar]
  10. Meyer, R.K.F. and Schmidt-Kaler, H
    . [1990]. Paleogeography and development of sponge reefs in the Upper Jurassic of South Germany - An overview. Facies, 23, 175–184.
    [Google Scholar]
  11. Pawellek, T. and Aigner, T
    . [2003a]. Stratigraphic architecture and gamma ray logs of deeper ramp carbonates(Upper Jurassic, SW Germany). Sedimentary Geology, 159, 203–240
    [Google Scholar]
  12. RufM., LinkE., ProssJ. and AignerT
    . [2005] Integrated sequence, stable isotope and palynofacies analysis in deeper epicontinental shelf carbonates from the Upper Jurassic of SW Germany. Sedimentary Geology, 175, 391–414
    [Google Scholar]
  13. Schlager, W
    . [2005]. Carbonate sedimentology and sequence stratigraphy. SEPM Concepts in Sedimentology and Paleontology, 8, 1–200.
    [Google Scholar]
  14. Stadtwerke München SWM GmbH
    [2019]. Ausbauoffensive Erneuerbare Energien. https://www.swm.de/privatkunden/unternehmen/energie/vision-fernwarme.html
    [Google Scholar]
  15. Steiner, U., Böhm, F
    . [2011]. Lithofacies and structure signatures of Imagelog in carbonates and their implimitations for reservoir characterisation in Southern Germany. 1st Sustainable Earth Sciences Conference & Exhibition, 8.–11. November, Valencia, Spain.
    [Google Scholar]
  16. Vail, P.R., MitchumM.Jr., and Thomson, S
    . [1977]. Seismic stratigraphy and global changes of sea level, in C.E.Payton, ed., Seismic stratigraphy - Applications to hydrocarbon exploration. AAPG Memoir, 26, 49–212.
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201901261
Loading
/content/papers/10.3997/2214-4609.201901261
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error