1887

Abstract

Summary

The geothermal energy sector is rapidly developing in the Netherlands. Low-enthalpy direct use geothermal wells are typically developed in aquifers at depths of 1,800–3,000 m, the same reservoirs targeted for hydrocarbon exploration. Alternative shallower targets include unconsolidated aquifers within the North Sea Supergroup, with producible water at temperatures of 20 - 50 °C. To maximize heat extraction from these aquifers high flow rates are needed. Conversely, the well design must inhibit the mobilization of formation grains. In the Netherlands well design criteria for aquifer thermal energy storage (ATES) systems (typically < 200 m depth) consist of a maximum flow velocity on the borehole wall, which is independent of depth. For wells in deeper aquifers (300 – 1,500 m), the in situ stress as a function of depth is not incorporated in the design. The Drucker-Prager criterion can be used to determine shear failure at formation depth, so that a maximum allowable flow rate can be calculated. Empirically derived relations from the literature are presented to determine input parameters for the DruckerPrager criterion if lab measurements are absent. A comparison of the different well design criteria demonstrates that in situ stresses need to be incorporated for maximum allowable flow rate estimations.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202021057
2020-11-16
2024-04-28
Loading full text...

Full text loading...

References

  1. Bahr, D. B., Hutton, E. W., Syvitski, J. P., & Pratson, L. F.
    [2001] Exponential approximations to compacted sediment porosity profiles.Computers & Geosciences, 27(6), 691–700.
    [Google Scholar]
  2. Bareither, C. A., Edil, T. B., Benson, C. H., and Mickelson, D. M.
    [2008] Geological and physical factors affecting the friction angle of compacted sands.Journal of geotechnical and geoenvironmental engineering, 134(10), 1476–1489.
    [Google Scholar]
  3. Buik, N.
    [2001] Ontwerpnormen voor bronnen voor koude-/ warmteopslag. Onderzoek uitgevoerd in opdracht van NOVEM, project reference 149.508–105.0. IF Technology, Arnhem, Netherlands.
    [Google Scholar]
  4. Drijver, B., Bakema, G., and Oerlemans, P.
    [2019] State of the art of HT-ATES in The Netherlands. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019.
    [Google Scholar]
  5. Drijver, B. and Oerlemans, P.
    [2020] Full-scale HT-ATES tests demonstrate that current guidelines considerably overestimate sand production risks in deeper unconsolidated aquifers. Submitted to: Geoscience & Engineering in Energy Transition Conference 2020, Strassbourg, France.
    [Google Scholar]
  6. Driscoll, F. G.
    [1987] Groundwater and Wells, Johnson Division, second printing, St. Paul, Minnesota, USA.
    [Google Scholar]
  7. Drucker, D. C., and Prager, W.
    [1952] Soil mechanics and plastic analysis or limit design.Quarterly of applied mathematics, 10(2), 157–165.
    [Google Scholar]
  8. Hazen, A.
    [1982] Some physical properties of sands and gravels.Mass. State Board of Health. 24th Annual Report, 539–556.
    [Google Scholar]
  9. Hellebrand, K., Post, R. J., and In’t Groen, B.
    [2012] Options for shallow geothermal energy for horticulture; Kansen voor Ondiepe Geothermie voor de glastuinbouw. Retrieved from http://www.soilpedia.nl/Bikiwikidocumenten/SKBProjecten/2145Kansenvoorondiepegeothermieindeglastuinbouw/2145 Kansen voor ondiepe geothermie in de glastuinbouw.pdf.
    [Google Scholar]
  10. Makkink, H. J., Balemans, M. L. M., Schrama, E. J.
    [2011] Knowledge document wells (fields): design, construction and exploitation of drainage wells; Kennisdocument putten(velden) : ontwerp, aanleg en exploitatie van pompputten, project reference 2011.014, KWR, Nieuwegein, Netherlands.
    [Google Scholar]
  11. Mijnlieff, H. F.
    [2020] Introduction to the geothermal play and reservoir geology of the Netherlands.Netherlands Journal of Geosciences, 99, E2.
    [Google Scholar]
  12. Misstear, B. D., Banks, D., and Clark, L.
    [2006] Water wells and boreholes. Chichester: John Wiley & Sons.
    [Google Scholar]
  13. NVOE (Dutch abbreviation for Association for Underground Energy Storage Systems)
    NVOE (Dutch abbreviation for Association for Underground Energy Storage Systems). [2006] NVOE Guidelines for Underground Energy Storage (in Dutch).
    [Google Scholar]
  14. Provoost, M., Albeda, L., Godschalk, B., Werff, B., and Schoof, F.
    [2019] Geothermal Energy Use, Country Update for The Netherlands. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019.
    [Google Scholar]
  15. Smith, D. P.
    [2019] Fitting geothermal energy into the energy transition.Netherlands Journal of Geosciences, 98, E6.
    [Google Scholar]
  16. Sommer, W. T.
    [2015] Modelling and monitoring of aquifer thermal energy storage: impacts of soil heterogeneity, thermal interference and bioremediation (Doctoral dissertation, Wageningen University).
    [Google Scholar]
  17. Van Adrichem Boogaert, H. A., and Kouwe, W. P. F.
    [1993–1997] Stratigraphic nomenclature of the Netherlands.Mededelingen Rijksgeologische Dienst 50.
    [Google Scholar]
  18. Van Doorn, T. H., Vis, C. L., Salomons, N., van Dalfsen, W., Speelman, H., and Zijl, W.
    [1985] Aardwarmtewinning en grootschalige warmteopslag in tertiaire en kwartaire afzettingen. In Rijks Geologische Dienst (National Geological Survey) Rep. 85KAR02EX, Haarlem, The Netherlands.
    [Google Scholar]
  19. Yi, X.
    [2004] Numerical and analytical modeling of sanding onset prediction (Doctoral dissertation, Texas A&M University).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202021057
Loading
/content/papers/10.3997/2214-4609.202021057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error