1887

Abstract

Summary

The hypogenic caves developed in carbonate units have a significant structural control but most of their features are not detect by conventional methods due to their size below seismic resolution. This contribution focuses on the structural, petrographic and geometric characterization of karst conduits in Neoproterozoic carbonates of the Salitre Formation, central part of São Francisco Craton, Brazil. We address the influence of fractures and folds on the development of karst conduits through field and laboratory analysis and the application of Light Detection Ranging to characterize cave/conduit geometry. The preliminary results indicate that the process of karstification are intensified in fractures corridors developed along fold hinges, which create fluid flow corridors in carbonate units and may change petrophysical reservoir properties.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.2020622007
2020-02-11
2024-04-26
Loading full text...

Full text loading...

References

  1. Auler, A.S., Smart, P.L.
    , 2003. The influence of bedrock-derived acidity in the development of surface and underground karst: Evidence from the Precambrian carbonates of semi-arid northeastern Brazil.Earth Surf. Process. Landforms 28, 157–168. https://doi.org/10.1002/esp.443
    [Google Scholar]
  2. Cazarin, C.L., Bezerra, F.H.R., Borghi, L., Santos, R. V., Favoreto, J., Brod, J.A., Auler, A.S., Srivastava, N.K.
    , 2019. The conduit-seal system of hypogene karst in Neoproterozoic carbonates in northeastern Brazil.Mar. Pet. Geol.101, 90–107. https://doi.org/10.1016/j.marpetgeo.2018.11.046
    [Google Scholar]
  3. De Waele, J., Plan, L., Audra, P.
    , 2009. Recent developments in surface and subsurface karst geomorphology: An introduction.Geomorphology106, 1–8. https://doi.org/10.1016/j.geomorph.2008.09.023
    [Google Scholar]
  4. Ennes-Silva, R.A., Bezerra, F.H.R., Nogueira, F.C.C., Balsamo, F., Klimchouk, A., Cazarin, C.L., Auler, A.S.
    , 2016. Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil.Tectonophysics666, 244–259. https://doi.org/10.1016/j.tecto.2015.11.006
    [Google Scholar]
  5. Frumkin, A.
    , 2013. New Developments of Karst Geomorphology Concepts.Treatise Geomorphol.6, 1–13. https://doi.org/10.1016/B978-0-12-374739-6.00112-3
    [Google Scholar]
  6. Giuffrida, A., La Bruna, V., Castelluccio, P., Panza, E., Rustichelli, A., Tondi, E., Giorgioni, M., Agosta, F.
    , 2019. Fracture simulation parameters of fractured reservoirs: Analogy with outcropping carbonates of the Inner Apulian Platform, southern Italy.J. Struct. Geol.123, 18–41. https://doi.org/10.1016/j.jsg.2019.02.007
    [Google Scholar]
  7. Islam, H.D.
    , 2019. Geometry and Stability Analysis of Caves in Bahia, Brazil. Delft University of Technology.
    [Google Scholar]
  8. Klimchouk, A.
    , 2009. Morphogenesis of hypogenic caves.Geomorphology106, 100–117. https://doi.org/10.1016/j.geomorph.2008.09.013
    [Google Scholar]
  9. Klimchouk, A., Auler, A.S., Bezerra, F.H.R., Cazarin, C.L., Balsamo, F., Dublyansky, Y.
    , 2016. Hypogenic origin, geologic controls and functional organization of a giant cave system in Precambrian carbonates, Brazil.Geomorphology253, 385–405. https://doi.org/10.1016/j.geomorph.2015.11.002
    [Google Scholar]
  10. Klimchouk, A., Palmer, A.N., De Waele, J., Auler, A.S., Audra, P.
    , 2017. Hypogene Karst Regions and Caves of the World, Cave and Karst Systems of the World. Springer International Publishing, Cham.https://doi.org/10.1007/978-3-319-53348-3
    [Google Scholar]
  11. La Bruna, V., Agosta, F., Lamarche, J., Viseur, S., Prosser, G.
    , 2018. Fault growth mechanisms and scaling properties in foreland basin system: The case study of Monte Alpi, Southern Apennines, Italy.J. Struct. Geol.116, 94–113. https://doi.org/10.1016/j.jsg.2018.08.009
    [Google Scholar]
  12. Misi, A., Kyle, J.R.
    , 1994. Upper proterozoic carbonate stratigraphy, diagenesis, and stromatolitic phosphorite formation, Irece Basin, Bahia, Brazil.J. Sediment. Res. Vol. 64A, 299–310. https://doi.org/10.1306/d4267d84-2b26-11d7-8648000102c1865d
    [Google Scholar]
  13. Ogata, K., Senger, K., Braathen, A., Tveranger, J., Olaussen, S.
    , 2012. The importance of natural fractures in a tight reservoir for potential CO 2 storage: a case study of the upper Triassic–middle Jurassic Kapp Toscana Group (Spitsbergen, Arctic Norway).Geol. Soc. London, Spec. Publ.374, 395–415. https://doi.org/10.1144/sp374.9
    [Google Scholar]
  14. Pantou, I.
    , 2014. Impact of stratigraphic heterogeneity on hydrocarbon recovery in carbonate reservoirs: Effect of karst. Imperial College London.
    [Google Scholar]
  15. Xu, X., Chen, Q., Chu, C., Li, G.
    , 2017. Tectonic evolution and paleokarstification of carbonate rocks in the Paleozoic Tarim Basin.Carbonates and Evaporites32, 487–496. https://doi.org/10.1007/s13146-016-0307-4
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.2020622007
Loading
/content/papers/10.3997/2214-4609.2020622007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error