1887

Abstract

Summary

Gas extraction has caused pressure differences along the field, triggering earthquakes, which are causing a lot of damage and social unrest in the Groningen area. Predicting the degree of these stress changes, and as a result, the potential onset and exact location of failure and seismicity, is very challenging.

Therefore, developing good techniques that can monitor these changes is crucial for a better prediction and thus mitigation of failure and seismicity in the subsurface. Laboratory active acoustic-monitoring techniques are used to determine parameters that can forecast upcoming failure and seismicity.

We show the use of coda wave decorrelation as a monitoring tool using sandstones analogues for the Groningen reservoir. Failure of the rock sample is preceded by the formation of micro-fractures. These fractures change the scattering properties of acoustic waves. The decorrelation coefficient K, as the indicator of the amount of scattering and thus be used as precursor to failure. We show that by monitoring K we can forecast the upcoming failure of the rock samples in the laboratory.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202131009
2021-03-01
2024-04-26
Loading full text...

Full text loading...

References

  1. Barnhoorn, A., Verheij, J., Frehner, M., Zhubayev, A., & Houben, M.
    (2018). Experimental identification of the transition from elasticity to inelasticity from ultrasonic attenuation analyses.Geophysics, 83(4), MR221–MR229. https://doi.org/10.1190/geo2017-0534.1
    [Google Scholar]
  2. Deroo, F., Kim, J.-Y., Qu, J., Sabra, K., & Jacobs, L. J.
    (2010). Detection of damage in concrete using diffuse ultrasound.The Journal of the Acoustical Society of America, 127(6), 3315–3318. https://doi.org/10.1121/1.3409480
    [Google Scholar]
  3. Grêt, A., Snieder, R., Aster, R. C, & Kyle, P. R.
    (2005). Monitoring rapid temporal change in a volcano with coda wave interferometry.Geophysical Research Letters, 32(6), 1–4. https://doi.org/10.1029/2004GL021143
    [Google Scholar]
  4. Grêt, A., Snieder, R., & Özbay, U.
    (2006). Monitoring in situ stress changes in a mining environment with coda wave interferometry.Geophysical Journal International, 167(2), 504–508. https://doi.org/10.1111/j.1365-246X.2006.03097.x
    [Google Scholar]
  5. Grêt, A., Snieder, R., & Scales, J.
    (2006). Time-lapse monitoring of rock properties with coda wave interferometry.Journal of Geophysical Research: Solid Earth, 111(3), 1–11. https://doi.org/10.1029/2004JB003354
    [Google Scholar]
  6. Hadziioannou, C., Larose, E., Coutant, O., Roux, P., & Campillo, M.
    (2009). Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments.The Journal of the Acoustical Society of America, 125(6), 3688–3695. https://doi.org/10.1121/1.3125345
    [Google Scholar]
  7. Hall, S. A.
    (2009). Mechanics of Natural Solids. In D.Kolymbas & G.Viggiani (Eds.), Mechanics of Natural Solids (VIII). https://doi.org/10.1007/978-3-642-03578-4
    [Google Scholar]
  8. Niederleithinger, E., Wang, X., Herbrand, M., & Müller, M.
    (2018). Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams.Sensors (Switzerland), 18(6). https://doi.org/10.3390/s18061971
    [Google Scholar]
  9. Niu, F., Silver, P. G., Nadeau, R. M., & McEvilly, T. V.
    (2003). Mgration of seismic scatterers associated with the 1993 Parkfield aseismic transient event.Nature, 426(6966), 544–548. https://doi.org/10.1038/nature02151
    [Google Scholar]
  10. NURA.
    (1971). Effects of stress on velocity anisotropy in rocks with cracks.J Geophys Res, 76(8), 2022–2034. https://doi.org/10.1029/jb076i008p02022
    [Google Scholar]
  11. Planès, T., Larose, E., Margerin, L., Rossetto, V., & Sens-Schönfelder, C.
    (2014). Decorrelation and phase-shift of coda waves induced by local changes: Multiple scattering approach and numerical validation.Waves in Random and Complex Media, 24(2), 99–125. https://doi.org/10.1080/17455030.2014.880821
    [Google Scholar]
  12. Planès, T., Larose, E., Rossetto, V., & Margerin, L.
    (2015). Imaging multiple local changes in heterogeneous media with diffuse waves.The Journal of the Acoustical Society of America, 137(2), 660–667. https://doi.org/10.1121/1.4906824
    [Google Scholar]
  13. Poupinet, G., Ellsworth, W. L., & Frechet, J.
    (1984). Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California ( USA).Journal of Geophysical Research, 89(B7), 5719–5731. https://doi.org/10.1029/JB089iB07p05719
    [Google Scholar]
  14. Rossetto, V., Margerin, L., Plaǹs, T., & Larose, É.
    (2011). Locating a weak change using diffuse waves: Theoretical approach and inversion procedure.Journal of Applied Physics, 109(3). https://doi.org/10.1063/1.3544503
    [Google Scholar]
  15. Schubnel, A., Benson, P. M., Thompson, B. D., Hazzard, J. F., & Paul Young, R.
    (2006). Quantifying Damage , Saturation and Anisotropy in Cracked Rocks by Inverting Elastic Wave Velocities.Pure and Applied Geophysics, 163, 947–973. https://doi.org/10.1007/s00024-006-0061-y
    [Google Scholar]
  16. Snieder, R.
    (2002). Coda wave interferometry and the equilibration of energy in elastic media.Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66(4), 8. https://doi.org/10.1103/PhysRevE.66.046615
    [Google Scholar]
  17. (2006). The theory of coda wave interferometry.Pure and Applied Geophysics, 163(2–3), 455–473. https://doi.org/10.1007/s00024-005-0026-6
    [Google Scholar]
  18. Snieder, R., Prejean, S. G., & Johnson, J. B.
    (2006). Spatial variation in Mount St. Helens clones from coda wave analysis.Centre for Wave Phenomena Consortium Project 2006, 247–252. Retrieved from http://www.cwp.mines.edu/Meetings/Project06/cwp543.pdf
    [Google Scholar]
  19. Snieder, R., & Vrijlandt, M.
    (2005). Constraining the source separation with coda wave interferometry: Theory and application to earthquake doublets in the Hayward fault, California.Journal of Geophysical Research: Solid Earth, 110(4), 1–15. https://doi.org/10.1029/2004JB003317
    [Google Scholar]
  20. TNO & Ministerie van Economische Zaken.
    TNO & Ministerie van Economische Zaken. (2020). Groningen gasveld. Retrieved from https://www.nlog.nl/groningen-gasveld
    [Google Scholar]
  21. Van Thienen-Visser, K., & Breunese, J. N.
    (2015). Induced seismicity of the Groningen gas field: History and recent developments.Leading Edge, 34(6), 664–671. https://doi.org/10.1190/tle34060664.1
    [Google Scholar]
  22. Xie, F., Ren, Y., Zhou, Y., Larose, E., & Baillet, L.
    (2018). Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves.Journal of Geophysical Research: Solid Earth, 123(3), 2214–2227. https://doi.org/10.1002/2017JB014940
    [Google Scholar]
  23. Zotz-Wilson, R., Boerrigter, T., & Barnhoorn, A.
    (2019). Coda-wave monitoring of continuously evolving material properties and the precursory detection of yielding.The Journal of the Acoustical Society of America, 145(2), 1060–1068. https://doi.org/10.1121/1.5091012
    [Google Scholar]
  24. Zotz-wilson, R., Filippidou, N., Van Der Linden, A., & Verberne, B. A.
    (2020). Coda-Wave Based Monitoring of Pore-Pressure Depletion-driven Compaction of Slochteren Sandstone Samples from the Groningen Gas Field.Journal of Geophysical Research: Solid Earth.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202131009
Loading
/content/papers/10.3997/2214-4609.202131009
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error