1887

Abstract

Summary

We present the workflow and results of a passive seismic study that integrates: 1) the reconstruction of a coherent seismic wavefield based on ambient noise recordings and 2) the analysis of the reconstructed waveforms through a specific attribute called waveform coherence. The aim of this study is to assess the capacity of the method to monitor fluid saturation variations occurring within a natural gas geological storage site.

Specific attention was given to the raw noise data analysis and selection to improve the signal-to-noise ratio of the reconstructed body and surface waves. Then, the analysis of waveform coherence variations in time is performed using a 2D visualization tool that allows for a temporal and spatial observation of changes occurring within the subsurface.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202210176
2022-06-06
2024-04-28
Loading full text...

Full text loading...

References

  1. Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A., & Ferrazzini, V. (2007). 3‐D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophysical research letters, 34(2).
    [Google Scholar]
  2. Draganov, D., Campman, X., Thorbecke, J., Verdel, A., & Wapenaar, K. (2009). Reflection images from ambient seismic noise. Geophysics, 74(5), A63–A67.
    [Google Scholar]
  3. Lehujeur, M., Vergne, J., Schmittbuhl, J., & Maggi, A. (2015). Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern Alsace, France. Geothermal Energy, 3(1), 1–17.
    [Google Scholar]
  4. Obermann, A., Kraft, T., Larose, E., & Wiemer, S. (2015). Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). Journal of Geophysical Research: Solid Earth, 120(6), 4301–4316.
    [Google Scholar]
  5. Olivier, G., Brenguier, F., Carey, R., Okubo, P., & Donaldson, C. (2019). Decrease in seismic velocity observed prior to the 2018 eruption of Kīlauea volcano with ambient seismic noise interferometry. Geophysical Research Letters, 46(7), 3734–3744.
    [Google Scholar]
  6. Picozzi, M., Parolai, S., Bindi, D., & Strollo, A. (2009). Characterization of shallow geology by high-frequency seismic noise tomography. Geophysical Journal International, 176(1), 164–174.
    [Google Scholar]
  7. Planès, T., Rittgers, J. B., Mooney, M. A., Kanning, W., & Draganov, D. (2017). Monitoring the tidal response of a sea levee with ambient seismic noise. Journal of Applied Geophysics, 138, 255–263.
    [Google Scholar]
  8. Schimmel, M., Stutzmann, E., Lognonné, P., Compaire, N., Davis, P., Drilleau, M. & Banerdt, B. (2021). Seismic Noise Autocorrelations on Mars. Earth and Space Science, e2021EA001755.
    [Google Scholar]
  9. Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7).
    [Google Scholar]
  10. Stehly, L., Fry, B., Campillo, M., Shapiro, N. M., Guilbert, J., Boschi, L., & Giardini, D. (2009). Tomography of the Alpine region from observations of seismic ambient noise. Geophysical Journal International, 178(1), 338–350.
    [Google Scholar]
  11. Voisin, C, Guzmán, M. A. R., Réfloch, A., Taruselli, M., & Garambois, S. (2017). Groundwater monitoring with passive seismic interferometry. Journal of Water Resource and Protection, 9(12), 1414–1427.
    [Google Scholar]
  12. Voisin, C, & Delouche, E. (2019, December). Deep Crustal Fluids Monitoring of the Central Apennines with Ambient Seismic Noise. In AGU Fall Meeting Abstracts (Vol. 2019, pp. S21E–0545).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202210176
Loading
/content/papers/10.3997/2214-4609.202210176
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error