1887

Abstract

Summary

In this study, we monitor the depth variation of an unconfined aquifer by applying seismic noise interferometry to synthetic data modelled with a 2D finite-difference software. We consider two models with the same subsurface geological structure, but with different water table levels representing two monitoring periods. The receivers are placed at the topographic surface and collect the seismic signals generated by a source located at the bottom of the aquifer to simulate a pumping system. First, cross-correlation of seismic traces with a reference one is used to produce interferograms (i.e., virtual surveys) for both the tested models. Then, direct P-wave arrivals identified in the two interferograms are compared through the stretching technique in order to estimate the relative velocity changes (dv/v). Finally, the estimated dv/v values are related to theoretical ones obtained using a reference subsurface model to produce the water level depth in the considered monitoring period.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202220146
2022-09-18
2024-04-28
Loading full text...

Full text loading...

References

  1. Aguzzoli, A., Zanzi, L., and Arosio, D. [2021]. Seismic noise azimuthal spectral ratios to monitor landslide kinematics. Conference Proceedings, NSG2021 27th European Meeting of Environmental and Engineering Geophysics, Aug 2021, Volume 2021, p.1 – 5. DOI: https://doi.org/10.3997/2214-4609.202120213
    [Google Scholar]
  2. Curtis, A., Gerstoft, P., Sato, H., Snieder, R., and Wapenaar, K. [2006]. Seismic interferometry—turning noise into signal. The Leading Edge, 25(9), 1082–1092. DOI: https://doi.org/10.1190/1.2349814
    [Google Scholar]
  3. Garambois, S., Voisin, C., Romero Guzman, M. A., Brito, D., Guiller, B., and Réfloch, A. [2019]. Analysis of ballistic waves in seismic noise monitoring of water table variations in a water field site: added value from numerical modelling to data understanding. Geophysical Journal International, 219(3), 1636–1647. DOI: https://doi.org/10.1093/gji/ggz391
    [Google Scholar]
  4. Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., and Massey, C. [2015]. Environmental seismology: What can we learn on earth surface processes with ambient noise?Journal of Applied Geophysics, 116, 62–74. DOI: http://dx.doi. org/10.1016/j.jappgeo.2015.02.001
    [Google Scholar]
  5. Le Breton, M., Bontemps, N., Guillemot, A., Baillet, L., and Larose, E. [2021]. Landslide monitoring using seismic ambient noise correlation: challenges and applications. Earth-Science Reviews, 216, 103518. DOI: https://doi.org/10.1016/j.earscirev.2021.103518
    [Google Scholar]
  6. Mainsant, G., Larose, E., Broennimann, C., Jongmans, D., Michoud, C., and Jaboyedoff, M. [2012]. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction: Journal of Geophysical Research: Earth Surface, 117, F01030. DOI: https://doi.org/10.1029/2011JF002159
    [Google Scholar]
  7. Sens-Schönfelder, C., and Wegler, U. C. [2006]. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett.33, L21302. DOI: 10.1029/2006GL027797
    https://doi.org/10.1029/2006GL027797 [Google Scholar]
  8. Snieder, R. [2006]. The Theory of Coda Wave Interferometry. Pure appl. geophys.163, 455–473. DOI: https://doi.org/10.1007/s00024-005-0026-6
    [Google Scholar]
  9. Taruselli, M., Aguzzoli, A., Zanzi, L. and Arosio, D. [2020a]. Monitoring Ca Lita Landslide by Means of the Ambient Seismic Noise. 3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering, Conference Proceedings, 1–5. DOI: 10.3997/2214‑4609.202071088.
    https://doi.org/10.3997/2214-4609.202071088 [Google Scholar]
  10. Taruselli, M., Aguzzoli, A., Zanzi, L. and Arosio, D. [2020b]. Groundwater level monitoring tests with seismic interferometry. Conference Proceedings, NSG2020 26th European Meeting of Environmental and Engineering Geophysics, Dec 2020, Volume 2020, p.1 – 5. DOI: https://doi.org/10.3997/2214-4609.202020200
    [Google Scholar]
  11. Thorbecke, J. W., and Draganov, D. [2011]. Finite-difference modeling experiments for seismic interferometry. Geophysics, 76(6), H1–H18. DOI: https://doi.org/10.1190/geo2010-0039.1
    [Google Scholar]
  12. Voisin, C., Garambois, S., Massey, C., and Brossier, R. [2016]. Seismic noise monitoring of the water table in a deep-seated, slow-moving landslide. Interpretation, 4(3), SJ67–SJ76. DOI: https://doi.org/10.1190/INT-2016-0010.1
    [Google Scholar]
  13. Voisin, C., Romero Guzmán, M.A., Réfloch, A., Taruselli, M. and Garambois, S. [2017]. Groundwater Monitoring with Passive Seismic Interferometry. Journal of Water Resource and Protection, 9, 1414–1427. DOI: https://doi.org/10.4236/jwarp.2017.912091
    [Google Scholar]
  14. Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A. [2010]. Tutorial on seismic interferometry: Part 1—Basic principles and applications. Geophysics, 75(5), 75A195–75A209. DOI: https://doi.org/10.1190/1.3457445
    [Google Scholar]
  15. Watson, B. A. [1986]. Ideal shrinking and expansion of discrete sequences. NASA Technical Memorandum, 88202.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202220146
Loading
/content/papers/10.3997/2214-4609.202220146
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error