1887
Volume 48 Number 3
  • E-ISSN: 1365-2478

Abstract

Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, we show that multicomponent wide‐azimuth reflection data (combined with known vertical velocity or reflector depth) or multi‐azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media.

In order to facilitate the inversion procedure, we introduce a Thomsen‐style parametrization for monoclinic media that includes the vertical velocities of the P‐wave and one of the split S‐waves and a set of dimensionless anisotropic coefficients. Our notation, defined for the coordinate frame associated with the polarization directions of the vertically propagating shear waves, captures the combinations of the stiffnesses responsible for the normal‐moveout (NMO) ellipses of all three pure modes. The first group of the anisotropic parameters contains seven coefficients ((1,2), (1,2,3) and (1,2)) analogous to those defined by Tsvankin for the higher‐symmetry orthorhombic model. The parameters (1,2), (1,2) and (1,2) are primarily responsible for the pure‐mode NMO velocities along the coordinate axes and (i.e. in the shear‐wave polarization directions). The remaining coefficient (3) is not constrained by conventional‐spread reflection traveltimes in a horizontal monoclinic layer. The second parameter group consists of the newly introduced coefficients (1,2,3) which control the rotation of the P‐, S‐ and S‐wave NMO ellipses with respect to the horizontal coordinate axes. Misalignment of the P‐wave NMO ellipse and shear‐wave polarization directions was recently observed on field data by Pérez .

Our parameter‐estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P‐, S‐ and S‐waves. A Dix‐type representation of the NMO velocity of mode‐converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS‐ and PS‐waves. Numerical tests show that our method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2478.2000.00200.x
2001-12-24
2024-04-28
Loading full text...

Full text loading...

References

  1. AlfordR.M.1986. Shear data in the presence of azimuthal anisotropy. 56th SEG meeting, Houston, USA, Expanded Abstracts, 476–479.
  2. AlkhalifahT. & TsvankinI.GeophysicsVelocity analysis in transversely isotropic media60199515501566
    [Google Scholar]
  3. BakulinA., GrechkaV., TsvankinI.2000. Estimation of fracture parameters from reflection seismic data. Part III: Fractures producing effective monoclinic media. Geophysics, in press.
  4. CorriganD., WithersR., DarnallJ., SkopinskiT. 1996. Fracture mapping from azimuthal velocity analysis using 3D surface seismic data. 66th SEG meeting, Denver, USA, Expanded Abstracts, 1834–1837.
  5. FedorovF.I.1968. Theory of Elastic Waves in Crystals.Plenum Press.
  6. GrechkaV., TheophanisS., TsvankinI.GeophysicsJoint inversion of P‐ and PS‐waves in orthorhombic media: theory and a physical‐modeling study641999a146161
    [Google Scholar]
  7. GrechkaV. & TsvankinI.Geophysics3D description of normal moveout in anisotropic inhomogeneous media631998a10791092
    [Google Scholar]
  8. GrechkaV. & TsvankinI.1998b. Inversion of azimuthally dependent NMO velocity in transversely isotropic inhomogeneous media with a tilted axis of symmetry. 68th SEG meeting, New Orleans, USA, Expanded Abstracts, 1483–1486.
  9. GrechkaV. & TsvankinI.Geophysics3D moveout velocity analysis and parameter estimation for orthorhombic media641999a820837
    [Google Scholar]
  10. GrechkaV. & TsvankinI.Geophysics3D moveout inversion in azimuthally anisotropic media with lateral velocity variation: theory and a case study641999b12021218
    [Google Scholar]
  11. GrechkaV., TsvankinI., CohenJ.K.Geophysical ProspectingGeneralized Dix equation and analytic treatment of normal‐moveout velocity for anisotropic media471999b117148
    [Google Scholar]
  12. HelbigK.1994. Foundations of Anisotropy for Exploration Seismics: Handbook of Geophysical Exploration 22 (eds K. Helbig and S. Treitel), Vol. 22. Pergamon Press, Inc.
  13. MenschT. & RasolofosaonP.Geophysical Journal InternationalElastic‐wave velocities in anisotropic media of arbitrary symmetry – generalization of Thomsen’s parameters ε, δ, and γ 12819974364
    [Google Scholar]
  14. MusgraveM.J.P. 1970.Crystal Acoustics.Holden‐Day Inc.
  15. PérezM.A., GrechkaV., MichelenaR.J.GeophysicsFracture detection in a carbonate reservoir using a variety of seismic methods64199912661276
    [Google Scholar]
  16. PressW.H., FlanneryB.P., TeukolskyS.A., VetterlingW.T.1987Numerical Recipes: the Art of Scientific Computing . Cambridge University Press.
  17. PšenčíkI. & GajewskiD.GeophysicsPolarization, phase velocity and NMO velocity of qP‐waves in arbitrary weakly anisotropic media 63199817541766
    [Google Scholar]
  18. SayersC.M.Geophysical Journal InternationalMisalignment of the orientation of fractures and the principal axes for P and S‐waves in rocks containing multiple non‐orthogonal fracture sets1331998459466
    [Google Scholar]
  19. SayersC.M. & EbromD.A.GeophysicsSeismic traveltime analysis for azimuthally anisotropic media: theory and experiment62199715701582
    [Google Scholar]
  20. SchoenbergM. & SayersC.GeophysicsSeismic anisotropy of fractured rock601995204211
    [Google Scholar]
  21. ThomsenL.GeophysicsWeak elastic anisotropy51198619541966
    [Google Scholar]
  22. ThomsenL., TsvankinI., MuellerM.C.GeophysicsCoarse‐layer stripping of vertically variable azimuthal anisotropy from shear‐wave data64199911261138
    [Google Scholar]
  23. TsvankinI.GeophysicsAnisotropic parameters and P‐wave velocity for orthorhombic media62199712921309
    [Google Scholar]
  24. TsvankinI. & ThomsenL.GeophysicsNonhyperbolic reflection moveout in anisotropic media59199412901304
    [Google Scholar]
  25. TsvankinI. & ThomsenL.GeophysicsInversion of reflection traveltimes for transverse isotropy60199510951107
    [Google Scholar]
  26. WintersteinD.F. & MeadowsM.A.GeophysicsShear‐wave polarizations and subsurface stress directions at Lost Hills field56199113311348
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2478.2000.00200.x
Loading
/content/journals/10.1046/j.1365-2478.2000.00200.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error