1887
Volume 49, Issue 2
  • E-ISSN: 1365-2478

Abstract

A three‐dimensional (3D) inversion program is developed to interpret gravity data using a selection of constraints. This selection includes minimum distance, flatness, smoothness and compactness constraints, which can be combined using a Lagrangian formulation. A multigrid technique is also implemented to resolve separately large and short gravity wavelengths. The subsurface in the survey area is divided into rectangular prismatic blocks and the problem is solved by calculating the model parameters, i.e. the densities of each block. Weights are given to each block depending on depth, information on density and the density range allowed for the region under investigation. The present computer code is tested on modelled data for a dipping dike and multiple bodies. Results combining different constraints and a weight depending on depth are shown for the dipping dike. The advantages and behaviour of each method are compared in the 3D reconstruction. Recovery of geometry (depth, size) and density distribution of the original model is dependent on the set of constraints used. From experimentation, the best combination of constraints for multiple bodies seems to be flatness and a minimum volume for the multiple bodies. The inversion method is tested on real gravity data from the Rouyn‐Noranda (Quebec) mining camp. The 3D inversion model for the first 10 km is in agreement with the known major lithological contacts at the surface; it enables the determination of the geometry of plutons and intrusive rocks at depth.

Loading

Article metrics loading...

/content/journals/10.1046/j.1365-2478.2001.00254.x
2001-12-21
2024-04-26
Loading full text...

Full text loading...

References

  1. BackusG. & GilbertJ.F.1967. Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal of the Royal Astronomical Society13, 247–276.
    [Google Scholar]
  2. BanerjeeB. & GuptaS.P.D.1977. Gravitational attraction of a rectangular parallelepiped. Geophysics42, 1053–1055.
    [Google Scholar]
  3. BarbosaV.C.F. & SilvaJ.B.C.1994. Generalized compact gravity inversion. Geophysics59, 57–68.
    [Google Scholar]
  4. BearG.W., Al‐ShukriH.J., RudmanA.J.1995. Linear inversion of gravity data for 3‐D density distributions. Geophysics60, 1354–1364.
    [Google Scholar]
  5. BellefleurG.1992. Contribution of potential methods to the geological and the deep structure cartography in the Blake River Group, Abitibi. MSc thesis, Ecole Polytechnique, Montreal (in French).
  6. BhattacharyyaB.K. & LeuL.‐K.1977. Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics42, 41–50.
    [Google Scholar]
  7. BriggsW.1987. A Multigrid Tutorial. Society for Industrial and Applied Mathematics.
  8. DeschampsF., ChouteauM., DionD.‐J.1993. Geological interpretation of aeromagnetic and gravimetric data in the region located at the west part of the Rouyn‐Noranda city. In: Études Géophysiques Récentes de Certains Secteurs de la Ceinture Volcanosédimentaire de l'Abitibi (ed. D.‐J.Dion ), Vol. DV 93‐10 (ed. M.Germain ), pp. 78–130. Ministère des Ressources Naturelles, Secteur des Mines (in French).
  9. DjeridaneS.1996. Two‐dimensional gravimetric inversion minimizing subsurface structures; application to Abitibi and Opatica sub‐provinces. MSc thesis, Ecole Polytechnique, Montreal (in French).
  10. GauvinJ.1995. Lessons of Mathematical Programming Ecole Polytechnique, Montreal (in French).
  11. GibsonH. & WatkinsonD.1990. Volcanogenic massive sulphide deposits of the Noranda cauldron and shield volcano, Quebec. In: Northwestern Quebec Polymetallic Belt, Vol. 43 (eds M.Rive , P.Verpaelst , Y.Gagnon , J.Lulin , G.Riverin and A.Simard ), pp. 119–132. Canadian Institute of Mining and Metallurgy.
  12. GolubG.H. & Van LoanC.F.1996. Matrix Computations , 3rd edn.Johns Hopkins University Press.
  13. GreenA., MilkereitB., MayrandL., LuddenJ., HubertC., JacksonS. et al. 1990. Deep structure of an Archaean greenstone terrane. Nature344, 327–330.
    [Google Scholar]
  14. GreenW.R.1975. Inversion of gravity profiles by use of a Backus‐Gilbert approach. Geophysics40, 763–772.
    [Google Scholar]
  15. GuillenA. & MenichettiV.1984. Gravity and magnetic inversion with minimization of a specific functional. Geophysics49, 1354–1360.
    [Google Scholar]
  16. HaázI.B.1953. Relations between the potential of the attraction of the mass contained in a finite rectangular prism and its first and second derivatives. Geofizikai Kozlemenyek2(7) (in Hungarian).
    [Google Scholar]
  17. HackbuschW. & TrottenbergU.1982. Multigrid Methods . Springer‐Verlag, Inc.
  18. JacksonD.1979. The use of a priori data to resolve non‐uniqueness in linear inversion. Geophysical Journal of the Royal Astronomical Society57, 137–157.
    [Google Scholar]
  19. JacobsenB.H.1987. A case for upward continuation as a standard separation filter for potential‐field maps. Geophysics52, 1138–1148.
    [Google Scholar]
  20. KeatingP.1992. Interpretation of the gravity anomaly field in the Noranda – Val d'Or region. Abitibi Greenstone Belt, Canadian Shield. Canadian Journal of Earth Science29, 962–971.
    [Google Scholar]
  21. KeatingP.1993. Interpretation of the gravity anomaly field in the Noranda – Val d'Or region. In: Études Géophysiques Récentes de Certains Secteurs de la Ceinture Volcanosédimentaire de l'Abitibi (ed. D.‐J. Dion), Vol. DV 93‐10 (ed. M.Germain ), pp. 57–76. Ministère des Ressources Naturelles, Secteur des Mines (in French).
  22. LastB.J. & KubikK.1983. Compact gravity inversion. Geophysics48, 713–721.
    [Google Scholar]
  23. LiX. & ChouteauM.1998. Three‐dimensional gravity modelling in all space. Surveys in Geophysics19, 339–368.
    [Google Scholar]
  24. LiY. & OldenburgD.W.1996. 3‐D inversion of magnetic data. Geophysics61, 394–408.
    [Google Scholar]
  25. LiY. & OldenburgD.W.1998. 3‐D inversion of gravity data. Geophysics63, 109–119.
    [Google Scholar]
  26. LinesL.R. & TreitelS.1984. Tutorial: A review of least‐squares inversion and its application to geophysical problems. Geophysical Prospecting32, 159–186.
    [Google Scholar]
  27. NagyD.1966. The gravitational attraction of a right rectangular prism. Geophysics31, 362–371.
    [Google Scholar]
  28. PéloquinA., PotvinR., ParadisS., LaflècheM., VerpaelstP., GibsonH.1990. The Blake River Group, Rouyn‐Noranda area, Québec: a stratigraphic synthesis. In: Northwestern Québec Polymetallic Belt, Vol. 43 (eds M.Rive , P.Verpaelst , Y.Gagnon , J.Lulin , G.Riverin and A.Simard ), pp. 107–118. Canadian Institute of Mining and Metallurgy.
  29. PerronG. & CalvertA.1998. Case history: Shallow, high‐resolution seismic imaging at the Ansil mining camp in the Abitibi greenstone belt. Geophysics63, 379–391.
    [Google Scholar]
  30. PilkingtonM.1997. 3‐D magnetic imaging using conjugate gradients. Geophysics62, 1132–1142.
    [Google Scholar]
  31. VerpaelstP., PéloquinA., AdamE., BarnesA., LuddenJ., DionD.‐J. et al. 1995. Seismic reflection profiles across the ‘Mines Series’ in the Noranda camp of the Abitibi belt, eastern Canada. Canadian Journal of Earth Science32, 167–176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1046/j.1365-2478.2001.00254.x
Loading
/content/journals/10.1046/j.1365-2478.2001.00254.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error