1887
Volume 62, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Interpretation of magnetic data can be carried out either in the space or frequency domain. The interpretation in the frequency domain is computationally convenient because convolution becomes multiplication. The frequency domain approach assumes that the magnetic sources distribution has a random and uncorrelated distribution. This approach is modified to include random and fractal distribution of sources on the basis of borehole data. The physical properties of the rocks exhibit scaling behaviour which can be defined as () = , where P(k) is the power spectrum as a function of wave number (k), and and are the constant and scaling exponent, respectively. A white noise distribution corresponds to = 0. The high resolution methods of power spectral estimation e.g. maximum entropy method and multi‐taper method produce smooth spectra. Therefore, estimation of scaling exponents is more reliable. The values of are found to be related to the lithology and heterogeneities in the crust. The modelling of magnetic data for scaling distribution of sources leads to an improved method of interpreting the magnetic data known as the scaling spectral method. The method has found applicability in estimating the basement depth, Curie depth and filtering of magnetic data.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12094
2013-12-27
2024-04-28
Loading full text...

Full text loading...

References

  1. AsterR.C., BorchersB. and ThurberC.H.2005. Parameter Estimation and Inverse Problems, 2nd Edition. Academic Press. ISBN 9780123850485.
    [Google Scholar]
  2. BansalA.R. and DimriV.P.1999. Gravity evidence for mid crustal domal structure below Delhi fold belt and Bhilwara super group of western India. Geophysical Research Letters26, 2793–2795.
    [Google Scholar]
  3. BansalA.R. and DimriV.P.2001. Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure and Applied Geophysics158, 799–812.
    [Google Scholar]
  4. BansalA.R. and DimriV.P.2005a. Depth determination from nonstationary magnetic profile for scaling geology. Geophysical Prospecting53, 399–410.
    [Google Scholar]
  5. BansalA.R. and DimriV.P.2005b. Self‐affine covariance gravity model for the Bay of Bengal. Geophysical Journal International161, 21–30.
    [Google Scholar]
  6. BansalA.R., DimriV.P. and SagarG.V.2006a. Quantitative interpretation of gravity and magnetic data over southern granulite terrain using scaling spectral approach. Journal Geological Society of India67, 469–474.
    [Google Scholar]
  7. BansalA.R., DimriV.P. and SagarG.V.2006b. Depth estimation from gravity data using the maximum entropy method (MEM) and multi taper method (MTM). Pure and Applied Geophysics163, 1417–1434.
    [Google Scholar]
  8. BansalA.R.2007. Power law relation of bathymetry and gravity roughness with age of oceanic crust below Ninety East Ridge. Indian Journal of Marine Sciences36, 105–109.
    [Google Scholar]
  9. BansalA.R. and DimriV.P.2010. Scaling spectral analysis: A new tool for interpretation of gravity and magnetic data. Earth Science India e‐Journal3, 54–68.
    [Google Scholar]
  10. BansalA.R., GabrielG. and DimriV.P.2010a. Power law distribution of susceptibility and density and its relation to seismic properties: An example from the German Continental Deep Drilling Program. Journal of Applied Geophysics72, 123–128.
    [Google Scholar]
  11. BansalA.R., RaoV.K., DimriV.P. and BabuK.K.2010b. Heterogeneity in Kutch (India), an intraplate seismic region from gravity data. EGM2010 International workshop: Adding new value to Electromagnetic, Gravity and magnetic methods of exploration, Capri, Italy, Expanded Abstract.
  12. BansalA.R., GabrielG., DimriV.P. and KrawczykC.M.2011. Estimation of the depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics76, L11–22.
    [Google Scholar]
  13. BansalA.R. and AnandS.P.2012. Estimation of depth to the bottom of magnetic sources (DBMS) using modified centroid method from Aeromagnetic data of Central India. 9th India Conference, SPG, Expanded Abstract, P343.
  14. BansalA.R., AnandS.P., MitaR., RaoV.K. and DimriV.P.2012. Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of central India using modified centroid method for fractal distribution of sources.AGU Fall Meeting Abstract.
    [Google Scholar]
  15. BansalA.R., AnandS.P., MitaR., RaoV.K. and DimriV.P.2013. Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of central India using modified centroid method for fractal distribution of sources. Tectonophysics603, 155–161.
    [Google Scholar]
  16. BathM.1974. Spectral Analysis in Geophysics. Elsevier Scientific Publishing Company, Amsterdam.
    [Google Scholar]
  17. BhattacharyyaB.K.1964. Magnetic anomalies due to prism‐shaped bodies with arbitrary polarization. Geophysics29, 517–531.
    [Google Scholar]
  18. BhattacharyyaB.K. and LeuL.K.1975. Analysis of magnetic anomalies over Yellowstone National Park: Mapping of Curie point isothermal surface for geothermal reconnaissance. Journal of Geophysical Research80, 4461–4465.
    [Google Scholar]
  19. BlackmanR.B. and TukeyJ.W.1958. The Measurement of Power Spectra from The Point of View of Communication Engineering. Dover Publications, New York, pp. 190.
    [Google Scholar]
  20. BlakelyR.J.1995. Potential Theory in Gravity & Magnetic Applications. Cambridge University Press.
    [Google Scholar]
  21. BouligandC., GlenJ.M.G. and BlakelyR.J.2009. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. Journal of Geophysical Research114, B11104.
    [Google Scholar]
  22. BultmanM.W. and GettingsM.E.1994. New techniques of geophysical data analysis: an investigation of the geometry, structure, and bedrock lithology of the San Rafael Basin, Arizona. U.S. Geological Circular, 1103‐A, 14–15.
    [Google Scholar]
  23. BurgJ.P.1967. Maximum entropy spectral analysis. 37th Annual International Meeting, SEG.
  24. BurgJ.P.1968. A new analysis technique for time series data, paper presented at Advanced study institute on signal processing. NATO, Enschede, Netherlands.
  25. ChamoliA., BansalA.R. and DimriV.P.2007. Wavelet and rescaled range approach for the Hurst coefficient for short and long time series. Computer and Geosciences33, 83–93.
    [Google Scholar]
  26. CooleyJ.W. and TukeyJ.W.1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computations19, 297–301.
    [Google Scholar]
  27. DimriV.P.1986. On the time varying Wiener filter. Geophysical Prospecting34, 904–912.
    [Google Scholar]
  28. DimriV.P.1992. Deconvolution and Inverse Theory: Application to Geophysical Problems. Elsevier, Amsterdam.
    [Google Scholar]
  29. DimriV.P.2000. Crustal Fractal Magnetization. Application of Fractals in Earth Sciences, (ed. V.P.Dimri ). A.A. Balkema, USA, 89–95.
    [Google Scholar]
  30. DimriV.P., BansalA.R., SrivastavaR.P. and VedantiN.2003. Scaling behaviour of real earth source distribution: Indian Case Studies. Indian Continental Lithosphere: Emerging Research Trends, (eds T.M.Mahadevan , B.R.Arora and K.R.Gupta ), Memoir 53, Geological Society of India, 431–448.
    [Google Scholar]
  31. DimriV.P.2005. Fractal Behaviour of The Earth System, (ed. V.P.Dimri ), Springer, New York.
    [Google Scholar]
  32. DimriV.P. and BansalA.R.2011. Application of modified centroid method based on fractal distribution of sources to the Indian Magnetic data. American Geophysical Union Fall Meeting Abstracts1, 0986.
    [Google Scholar]
  33. DimriV.P., SrivastavaR.P. and VedantiN.2012. Fractal Models in Exploration Geophysics. Elsevier, USA.
    [Google Scholar]
  34. FediM., QuartaT. and SantisA.D.1997. Inherent power‐law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics62, 1143–1150.
    [Google Scholar]
  35. FediM.2003. Global and local multiscale analysis of magnetic susceptibility data. Pure and Applied Geophysics 160, 2399–2417.
    [Google Scholar]
  36. FediM., HansenP.C. and PaolettiV.2005a. Analysis of depth resolution in potential‐field inversion. Geophysics70, A1–A11.
    [Google Scholar]
  37. FediM., FioreD. and MannaM.L.2005b. Regularity analysis applied to well log data. Fractal behavior of the Earth system, (ed. V.P.Dimri ). Springer, New York, pp. 63–82.
    [Google Scholar]
  38. FougereP.F.1985. On the accuracy of spectrum analysis of red noise processes using maximum entropy and periodogram methods: Simulation studies and application to geophysical data. Journal of Geophysical Research90, 4355–4361.
    [Google Scholar]
  39. GabrielG., BansalA.R., DresselI., DimriV.P. and KrawczykC.2011. Curie depths estimation in Germany: methodological studies for derivation of geothermal proxies using new magnetic anomaly data. Geophysical Research Abstracts13, EGU2011–6938.
    [Google Scholar]
  40. GettingsM.E., BultmanM.W. and FisherF.S.1991. Detailed profiles of southeastern Arizona obtained by a truck mounted magnetometer – A step toward better utilization of the information content of geophysical data. U.S. Geological Survey Circular1062, 31–32.
    [Google Scholar]
  41. GettingsM.E., BultmanM.W. and FisherF.S.1993. Geophysical investigation in the search of covered mineral deposits. Integrated methods in exploration and Discovery: conference program and extended abstracts, (eds S.B.Romberger and D.I.Fletcher ). Society of Economic Geologists, AB35–36.
    [Google Scholar]
  42. GettingsM.E.2005. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek igneous centre of Absaroka Mountains, Wyoming. Nonlinear Processes in Geophysics12, 587–601.
    [Google Scholar]
  43. GettingsM.E.2012. Multifractal model of magnetic susceptibility distributions in some igneous rocks. Nonlinear Processes in Geophysics19, 635–642.
    [Google Scholar]
  44. GrantF.S. and WestG.F.1965. Interpretation Theory in Applied Geophysics. McGraw‐ Hill, New York.
    [Google Scholar]
  45. GregotskiM.E., JensenO. and Arkani‐HamedJ.1991. Fractal stochastic modeling of aeromagnetic data. Geophysics56, 1706–1715.
    [Google Scholar]
  46. GundmundssonG.1966. Interpretation of one‐dimensional magnetic anomalies by use of the Fourier‐transform. Geophysical Journal of Royal Astronomical Society12, 87–97.
    [Google Scholar]
  47. GundmundssonG.1967. Spectral analysis of magnetic surveys. Geophysical Journal of Royal Astronomical Society13, 325–337.
    [Google Scholar]
  48. GuptaH.K.2011. Deep Scientific Drilling at Koyna, India. American Geophysical Union Fall Meeting Abstract, U23C‐06.
    [Google Scholar]
  49. HahnA., KindE.G. and MishraD.C.1976. Depth estimation of magnetic sources by means of Fourier amplitude spectra. Geophysical Prospecting24, 287–308.
    [Google Scholar]
  50. HeirtzlerJ.R. and Le PichonX.1965. Crustal structure of the mid‐ocean ridges 3, magnetic anomalies over the mid –Atlantic Ridge. Journal of Geophysical Research70, 4013–4033.
    [Google Scholar]
  51. HildenbrandT.G., RosenbaumJ.G. and KauahikauaJ.P.1993. Aeromagnetic study of the island Hawaii. Journal of Geophysical Research98, 4099–4119.
    [Google Scholar]
  52. HortonC.W., HempkinsW.B. and HoffmanA.A.J.1964. A statistical analysis of some aeromagnetic maps from the Northwestern Canadian Shield. Geophysics29, 582–601.
    [Google Scholar]
  53. HoskenJ.W.J.1980. A stochastic model of seismic reflections. 50th Annual International Meeting, SEG, Paper G‐69.
  54. JenkinsG.M. and WattsD.G.1968. Spectral Analysis and Its Applications. Holden‐Day.
    [Google Scholar]
  55. KanasewichE.R.1975. Time Sequence Analysis in Geophysics. The University of Alberta Press.
    [Google Scholar]
  56. KayS.M. and MarpleS.L.1981. Spectrum analysis – a modern perspective. Proceedings of the IEEE69, 1380–1419.
    [Google Scholar]
  57. LanzaR. and MeloniA.2006. The Earth's Magnetism, An introduction for Geologists. Springer‐Verlag, Berlin Heidelberg.
    [Google Scholar]
  58. LeonardiS. and KumpelH.J.1998. Variability of geophysical log data and signature of crustal heterogeneities at the KTB. Geophysical Journal International135, 964–974.
    [Google Scholar]
  59. LiT. and EatonD.W.2005. On the roles of magnetization and topography in the scaling behaviour of magnetic‐anomaly fields. Geophysical Journal International160, 46–54.
    [Google Scholar]
  60. LovejoyS., PecknoldS. and ScherzerD.2001. Stratified multifractal magnetization and surface geomagnetic fields‐I. Spectral analysis and modeling. Geophysical Journal International145, 112–126.
    [Google Scholar]
  61. LovejoyS. and SchertzerD.2007. Scaling and multifractal fields in the solid earth and topography. Non‐linear Processes in Geophysics14, 465–502.
    [Google Scholar]
  62. MandelbrotB.B.1983. The Fractal Geometry of Nature. WH Freeman, New York.
    [Google Scholar]
  63. MausS. and DimriV.P.1994. Scaling properties of potential fields due to scaling sources. Geophysical Research Letters21, 891–894.
    [Google Scholar]
  64. MausS. and DimriV.P.1995a. Potential field power spectrum inversion for scaling geology. Journal of Geophysical Research100, 12605–12616.
    [Google Scholar]
  65. Maus, S. and DimriV.P.1995b. Basin depth estimation using scaling properties of potential fields. Journal of Association of Exploration Geoscientists16, 131–139.
    [Google Scholar]
  66. Maus, S. and DimriV.P.1996. Depth estimation from the scaling power spectrum of potential field?Geophysical Journal International124, 113–120.
    [Google Scholar]
  67. MausS., GordonD. and FairheadJ.D.1997. Curie temperature depth estimation using a self‐similar magnetization model. Geophysical Journal International129, 163–168.
    [Google Scholar]
  68. McCoyE.J., WaldenA.T. and PrecivalD.B.1998. Multi taper spectral estimation of power law processes. IEEE Transections on Signal Processing46, 655–667.
    [Google Scholar]
  69. MostafaM.E.2009. Modelling magnetic anomalies of solid and fractal bodies with defined boundaries using the finite cube elements method. Geophysical Journal International177, 62–70.
    [Google Scholar]
  70. MundtW.1968. Anwendung statistischer Verfahren in der magnetik und gravimetrie Zur Tiefenerkundung. Pure and Applied Geophysics69, 143–157.
    [Google Scholar]
  71. NaiduP.S.1968. Spectrum of the potential field due to randomly distributed source. Geophysics33, 337–345.
    [Google Scholar]
  72. NaiduP.S.1970. Statistical structure of aeromagnetic field. Geophysics35, 279–292.
    [Google Scholar]
  73. NaiduP.S.1972. Maximum likelyhood (ML) estimation of depth from the spectrum of aeromagnetic fields. Pure and Applied Geophysics95, 141–149.
    [Google Scholar]
  74. NaiduP.S. and MathewM.P.1998. Analysis of Geophysical Potential Fields: A Digital Signal Processing Approach. Elsevier Science, B.V
    [Google Scholar]
  75. NegiJ.G., DimriV.P., AgarwalP.K. and PandeyO.P.1986. A spectral analysis of the aeromagnetic profiles for thickness estimation of flood basalts of India. Exploration Geophysics17, 105–111. 
    [Google Scholar]
  76. NeidellN.S.1966. Spectral studies of marine geophysical profiles. Geophysics31, 122–134.
    [Google Scholar]
  77. OkuboY., GrafR.J., HansenR.O., OgawaK. and TsuH.1985. Curie‐point depths of the island of Kyushu and surrounding areas, Japan. Geophysics50, 481–494
    [Google Scholar]
  78. PawlowskiR.S.1994. Green's equivalent‐layer concept in gravity band‐pass filter design. Geophysics59, 69–76.
    [Google Scholar]
  79. PecknoldS., LovejoyS. and SchertzerD.2001. Stratified multifractal magnetization and surface geomagnetic field –II. Multifractal analysis and Simulation. Geophysical Journal International145, 127–144.
    [Google Scholar]
  80. PedersenL.B.1991. Relations between potential fields and some equivalent sources. Geophysics56, 961–971.
    [Google Scholar]
  81. PercivalD.B. and WaldenA.T.1993. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge University Press, New York.
    [Google Scholar]
  82. PilkingtonM. and TodoeschuckJ.P.1990. Stochastic inversion for scaling geology. Geophysical Journal International102, 205–217.
    [Google Scholar]
  83. PilkingtonM. and TodoeschuckJ.P.1993. Fractal magnetization of continental crust. Geophysical Research Letters20, 627–630.
    [Google Scholar]
  84. PilkingtonM., GregotskiM.E., TodoeschuckJ.P.1994. Using fractal crustal magnetization models in magnetic interpretation. Geophysical Prospecting42, 677–692.
    [Google Scholar]
  85. PilkingtonM. and TodoeschuckJ.P.2004. Power‐law scaling behavior of crustal density and gravity. Geophysical Research Letters31, L09606.
    [Google Scholar]
  86. QuartaT., FediM. and SantisA.D.2000. Source ambiguity from an estimation of the scaling exponent of potential field power spectra. Geophysical Journal International140, 311–323.
    [Google Scholar]
  87. PilkingtonM. and CowanD.R.2006. Model‐based separation filtering of magnetic data. Geophysics71, L17‐L23.
    [Google Scholar]
  88. RajaramM., AnandS.P., HemantK. and PuruckerM.E.2009. Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth and Planetary Science Letters281, 147–158.
    [Google Scholar]
  89. RamA.2000. Processing and interpretation of nonstationary gravity and magnetic data for scaling geology. Ph. D. Thesis, Osmania University, Hyderabad.
    [Google Scholar]
  90. RavatD., PignatelliA., NicolosiI. and ChiappiniM.2007. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near‐surface magnetic anomaly data. Geophysical Journal International169, 421–434.
    [Google Scholar]
  91. RavatD., SalemA., AbdelazizA.M.S., ElawadiE. and MorganP.2011. Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt. Tectonophysics510, 337–344.
    [Google Scholar]
  92. RossH.E., BlakelyR.J. and ZobackM.D.2006. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics71, L51–L59.
    [Google Scholar]
  93. RoyA.1962. Ambiguity in geophysical interpretation. Geophysics27, 90–99.
    [Google Scholar]
  94. SenM.K. and StoffaP.L.2013. Global Optimization Methods in Geophysical Methods in Geophysical Inversion, 2nd Edition. Cambridge University Press.
    [Google Scholar]
  95. SersonP.H. and HannafordW.L.W.1957. A statistical analysis of magnetic profiles. Journal Geophysical Research62,1–18.
    [Google Scholar]
  96. SinghJ., BansalA.R. and KumarD.2004. On Multi‐Scaling Interpretation of Gravity Data. 5thConference & Exposition on Petroleum Geophysics, SPG, Extended Abstract, 35–38.
  97. SpectorA. and GrantF.S.1970. Statistical model for interpreting aeromagnetric data. Geophysics35, 293–302.
    [Google Scholar]
  98. TelfordW.M., GeldartL.P. and SheriffR.E.1990. Applied Geophysics, 2nd Edition. Cambridge University Press.
    [Google Scholar]
  99. ThomsonD.J.1982. Spectrum estimation and harmonic analysis. Proceeding of IEEE70, 1055–1096.
    [Google Scholar]
  100. TodoeschuckJ.P., JensenO.G. and LabonteS.1990. Gaussian scaling noise model of seismic reflection sequences: Evidence from well logs. Geophysics55, 480–484.
    [Google Scholar]
  101. TreitelS., ClementW.G. and KaulR.K.1971. The spectral determination of depths to buried magnetic basement rocks. Geophysical Journal of Royal Astronomical Society24, 415–428.
    [Google Scholar]
  102. WaldenA.T. and HoskenJ.W.J.1985. An investigation of the spectral properties of primary reflection coefficients. Geophysical Prospecting33, 400–435.
    [Google Scholar]
  103. WaldenA.T. and HoskenJ.W.J.1986. The nature of the non – Gaussianity of primary reflection coefficients and its significance for deconvolution. Geophysical Prospecting34, 1038–1066.
    [Google Scholar]
  104. ZhouS. and ThyboH.1998. Power spectral analysis of aeromagnetic data and KTB susceptibility logs, and their implications for fractal behaviour of crustal magnetization. Pure and Applied Geophysics151, 147–159.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12094
Loading
/content/journals/10.1111/1365-2478.12094
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Fractals; Magnetic data analysis

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error