1887
Volume 64, Issue 2
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The hydrodynamic characterization of the epikarst, the shallow part of the unsaturated zone in karstic systems, has always been challenging for geophysical methods. This work investigates the feasibility of coupling time‐lapse refraction seismic data with petrophysical and hydrologic models for the quantitative determination of water storage and residence time at shallow depth in carbonate rocks. The Biot–Gassmann fluid substitution model describing the seismic velocity variations with water saturation at low frequencies needs to be modified for this lithology. I propose to include a saturation‐dependent rock‐frame weakening to take into account water–rock interactions. A Bayesian inversion workflow is presented to estimate the water content from seismic velocities measured at variable saturations. The procedure is tested first with already published laboratory measurements on core samples, and the results show that it is possible to estimate the water content and its uncertainty. The validated procedure is then applied to a time‐lapse seismic study to locate and quantify seasonal water storage at shallow depth along a seismic profile. The residence time of the water in the shallow layers is estimated by coupling the time‐lapse seismic measurements with rainfall chronicles, simple flow equations, and the petrophysical model. The daily water input computed from the chronicles is used to constraint the inversion of seismic velocities for the daily saturation state and the hydrodynamic parameters of the flow model. The workflow is applied to a real monitoring case, and the results show that the average residence time of the water in the epikarst is generally around three months, but it is only 18 days near an infiltration pathway. During the winter season, the residence times are three times shorter in response to the increase in the effective rainfall.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12272
2015-06-29
2020-06-04
Loading full text...

Full text loading...

References

  1. AdamL., BatzleM., LewallenK.T. and van WijkK.2009. Seismic wave attenuation in carbonates. Journal of Geophysical Research: Solid Earth114, B06208.
    [Google Scholar]
  2. AquilinaL., LadoucheB. and DörfligerN.2006. Water storage and transfer in the epikarst of karstic systems during high flow periods. Journal of Hydrology327, 472–485.
    [Google Scholar]
  3. ArbelY., GreenbaumN., LangeJ. and InbarM.2010. Infiltration processes and flow rates in developed karst vadose zone using tracers in cave drips. Earth Surface Processes and Landforms35, 1682–1693.
    [Google Scholar]
  4. BachrachR.2006. Joint estimation of porosity and saturation using stochastic rock‐physics modeling. Geophysics71, O53–O63.
    [Google Scholar]
  5. Bailly‐ComteV., MartinJ.B., JourdeH., ScreatonE.J., PistreS. and LangstonA.2010. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. Journal of Hydrology386, 55–66.
    [Google Scholar]
  6. BakalowiczM.1979. Contribution de la géochimie des eaux à la connaissance de l'aquifère karstique de la karutification . Thesis, University Pierre et Marie Curie Paris 6, France.
    [Google Scholar]
  7. BiotM.A.1956a. Theory of propagation of elastic waves in a fluid‐saturated porous solid I. low‐frequency range. The Journal of Acoustical Society of America28, 168–178.
    [Google Scholar]
  8. BiotM.A.1956b. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. higher frequency range. The Journal of Acoustical Society of America28, 179–191.
    [Google Scholar]
  9. BruxellesL.2001. Dépôts et altérites des plateaux du Larzac central: causses de l’Hospitalet et de Campestre (Aveyron, Gard, Hérault). Evolution morphogénétiques, conséquences géologiques et implications pour l'aménagement. PhD Thesis, University Aix Marseille, France.
    [Google Scholar]
  10. BruxellesL. and CaubelA.1996. Lacs temporaires et circulation de surface sur le Causse de l’Hospitalet du Larzac (Aveyron) en 1996: fonctionnement et implications géomorphologiques. Bulletin‐Société Languedocienne de Géographie, 253–288.
    [Google Scholar]
  11. CadoretT.1993. Effet de la saturation eau/gaz sur les propriétés acoustiques des roches: étude aux fréquences sonores et ultrasonores. PhD Thesis, Technip.
  12. CadoretT., MavkoG. and ZinsznerB.1998. Fluid distribution effect on sonic attenuation in partially saturated limestones. Geophysics63, 154–160.
    [Google Scholar]
  13. ChapmanM.2003. Frequency‐dependent anisotropy due to meso‐scale fractures in the presence of equant porosity. Geophysical Prospecting51, 369–379.
    [Google Scholar]
  14. ClarkV.A., TittmannB.R. and SpencerT.W.1980. Effect of volatiles on attenuation (Q−1) and velocity in sedimentary rocks. Journal of Geophysical Research: Solid Earth85, 5190–5198.
    [Google Scholar]
  15. DelbartC., ValdesD., BarbecotF., TognelliA., RichonP. and CouchouxL.2014. Temporal variability of karst aquifer response time established by the sliding‐windows cross‐correlation method. Journal of Hydrology511, 580–588.
    [Google Scholar]
  16. DevilleS., JacobT., ChéryJ. and ChampollionC.2013. On the impact of topography and building mask on time varying gravity due to local hydrology. Geophysical Journal International192, 82–93.
    [Google Scholar]
  17. DuttaN.C. and OdéH.1979a. Attenuation and dispersion of compressional waves in fluid‐filled porous rocks with partial gas saturation (White model)—Part I: Biot theory. Geophysics44, 1777–1788.
    [Google Scholar]
  18. DuttaN.C. and OdéH.1979b. Attenuation and dispersion of compressional waves in fluid‐filled porous rocks with partial gas saturation (White model)—Part II: Results. Geophysics44, 1789–1805.
    [Google Scholar]
  19. DvorkinJ. and NurA.1996. Elasticity of high‐porosity sandstones: Theory for two North Sea data sets. Geophysics61, 1363–1370.
    [Google Scholar]
  20. FleuryP., PlagnesV. and BakalowiczM.2007. Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France). Journal of Hydrology345, 38–49.
    [Google Scholar]
  21. GalibertP.‐Y., ValoisR., MendesM. and GuérinR.2014. Seismic study of the low‐permeability volume in southern France karst systems. Geophysics79, EN1–EN13.
    [Google Scholar]
  22. GassmannF.1951. Über die Elastizität poröser Medien. Veirteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.
    [Google Scholar]
  23. GrombacherD., VanorioT. and EbertY.2012. Time‐lapse acoustic, transport, and NMR measurements to characterize microstructural changes of carbonate rocks during injection of CO2‐rich water. Geophysics77, WA169–WA179.
    [Google Scholar]
  24. IvanovaA., KashubinA., JuhojunttiN., KummerowJ., HenningesJ., JuhlinC.et al. 2012. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophysical Prospecting60, 957–973.
    [Google Scholar]
  25. JacobT., BayerR., CheryJ., JourdeH., MoigneN.L. and BoyJ.‐P.2008. Absolute gravity monitoring of water storage variation in a karst aquifer on the larzac plateau (Southern France). Journal of Hydrology359, 105–117.
    [Google Scholar]
  26. JacobT., CheryJ., BayerR., Le MoigneN., BoyJ.‐P. and VernantP.2009. Time‐lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophysical Journal International177, 347–360.
    [Google Scholar]
  27. KavouriK., PlagnesV., TremouletJ., DörfligerN., RejibaF. and MarchetP.2011. PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Journal of Hydrogeology19, 339–353.
    [Google Scholar]
  28. KeT., ShuL. and ChenX.2013. Modeling the groundwater recharge in karst aquifers by using a reservoir model. Water Science and Technology68, 406.
    [Google Scholar]
  29. KlimchoukA.2004. Towards defining, delimiting and classifying epikarst: Its origin, processes and variants of geomorphic evolution. Karst Water Institute Special Publications9, 23–35.
    [Google Scholar]
  30. LandrøM.2002. Uncertainties in quantitative time‐lapse seismic analysis. Geophysical Prospecting50, 527–538.
    [Google Scholar]
  31. MailletE.1906. La vidange des systèmes de réservoirs. Ann. Ponts et Chaussées Mém. et Doc. 21.
    [Google Scholar]
  32. MavkoG. and JizbaD.1991. Estimating grain‐scale fluid effects on velocity dispersion in rocks. Geophysics56, 1940–1949.
    [Google Scholar]
  33. MavkoG., MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press. ISBN 0521543444.
    [Google Scholar]
  34. MazzilliN., ChalikakisK., BoucherM., LegchenkoA., JourdeH. and GuyardH.2012. Applicability of MRS Soundings for the Characterisation of the Unsaturated Zone of Karst Systems. 18th European Meeting of Environmental and Engineering Geophysics, Paris, France, Expanded Abstracts.
  35. MazzilliN., JourdeH., JacobT., GuinotV., Le MoigneN. and BoucherM.2013. On the inclusion of ground‐based gravity measurements to the calibration process of a global rainfall‐discharge reservoir model: the case of the Durzon karst system (Larzac, southern France).Environmental Earth Sciences68, 1631–1646.
    [Google Scholar]
  36. MüllerT.M., GurevichB. and LebedevM.2010. Seismic wave attenuation and dispersion resulting from wave‐induced flow in porous rocks—A review. Geophysics75, 75A147–75A164.
    [Google Scholar]
  37. PerrinJ., JeanninP.‐Y. and ZwahlenF.2003. Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland. Journal of Hydrology279, 106–124.
    [Google Scholar]
  38. PeyraubeN., LastennetR. and DenisA.2012. Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the relationship. Journal of Hydrology 430–431, 13–24.
    [Google Scholar]
  39. PrideS.R., BerrymanJ.G. and HarrisJ.M.2004. Seismic attenuation due to wave‐induced flow. Journal of Geophysical Research: Solid Earth109, B01201.
    [Google Scholar]
  40. SharmaR., PrasadM., BatzleM. and VegaS.2013. Sensitivity of flow and elastic properties to fabric heterogeneity in carbonates. Geophysical Prospecting61, 270–286.
    [Google Scholar]
  41. TarantolaA.2004. Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics.
    [Google Scholar]
  42. TomsJ., MüllerT.M. and GurevichB.2007. Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting55, 671–678.
    [Google Scholar]
  43. TritzS., GuinotV. and JourdeH.2011. Modelling the behaviour of a karst system catchment using non‐linear hysteretic conceptual model. Journal of Hydrology397, 250–262.
    [Google Scholar]
  44. ValoisR.2011. Caractérisation structurale de morphologies karstiques superficielles et suivi temporel de l'infiltration à l'aide des méthodes électriques et sismiques. PhD Thesis, University Pierre et Marie Curie Paris 6, France.
  45. VanorioT., ScotellaroC. and MavkoG.2008. The effect of chemical and physical processes on the acoustic properties of carbonate rocks. The Leading Edge27, 1040–1048.
    [Google Scholar]
  46. VanorioT., NurA. and EbertY.2011. Rock physics analysis and time‐lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks. Geophysics76, O23–O33.
    [Google Scholar]
  47. VeireH.H., BorgosH.G. and LandrøM.2007. Stochastic inversion of pressure and saturation changes from time‐lapse multi component data. Geophysical Prospecting55, 805–818.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12272
Loading
/content/journals/10.1111/1365-2478.12272
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Groundwater , Inversion , Petrophysics , Seismics and Time‐lapse
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error