1887
Volume 66, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The quantitative explanation of the potential field data of three‐dimensional geological structures remains one of the most challenging issues in modern geophysical inversion. Obtaining a stable solution that can simultaneously resolve complicated geological structures is a critical inverse problem in the geophysics field. I have developed a new method for determining a three‐dimensional petrophysical property distribution, which produces a corresponding potential field anomaly. In contrast with the tradition inverse algorithm, my inversion method proposes a new model norm, which incorporates two important weighting functions. One is the L0 quasi norm (enforcing sparse constraints), and the other is depth‐weighting that counteracts the influence of source depth on the resulting potential field data of the solution. Sparseness constraints are imposed by using the L0 quasinorm on model parameters. To solve the representation problem, an L0 quasinorm minimisation model with different smooth approximations is proposed. Hence, the data space () method, which is much smaller than model space (), combined with the gradient‐projected method, and the model space, combined with the modified Newton method for L0 quasinorm sparse constraints, leads to a computationally efficient method by using an × system versus an × one because . Tests on synthetic data and real datasets demonstrate the stability and validity of the L0 quasinorm spare norms inversion method. With the aim of obtaining the blocky results, the inversion method with the L0 quasinorm sparse constraints method performs better than the traditional L2 norm (standard Tikhonov regularisation). It can obtain the focus and sparse results easily. Then, the Bouguer anomaly survey data of the salt dome, offshore Louisiana, is considered as a real case study. The real inversion result shows that the inclusion the L0 quasinorm sparse constraints leads to a simpler and better resolved solution, and the density distribution is obtained in this area to reveal its geological structure. These results confirm the validity of the L0 quasinorm sparse constraints method and indicate its application for other potential field data inversions and the exploration of geological structures.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12591
2017-11-28
2024-04-29
Loading full text...

Full text loading...

References

  1. BarbosaV.C.F. and SilvaJ.B.1994. Generalized compact gravity inversion. Geophysics59(1), 57–68.
    [Google Scholar]
  2. BarbosaV.C.F. and SilvaJ.O.B.C.2006. Interactive 2D magnetic inversion. A tool for aiding forward modeling and testing geologic hypotheses. Geophysics71(5), L43.
    [Google Scholar]
  3. BergV.D., Ewout and FriedlanderM.P.2008. Probing the Pareto Frontier for Basis Pursuit Solutions. Siam Journal on Scientific Computing31(2), 890–912.
    [Google Scholar]
  4. BlakeA. and ZissermanA.1987. Visual Reconstruction. Cambridge: MIT Press.
    [Google Scholar]
  5. BoschM. and McGaugheyJ.2001. Joint inversion of gravity and magnetic data under lithologic constraints. The Leading Edge20(8), 877–881.
    [Google Scholar]
  6. BoulangerO. and ChouteauM.2001. Constraints in 3D gravity inversion. Geophysical Prospecting49(2), 265–280.
    [Google Scholar]
  7. CalcagnoP., ChilèsJ.P., CourriouxG. and GuillenA.2008. Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential‐field interpolation and geological rules. Physics of the Earth & Planetary Interiors171(1), 147–157.
    [Google Scholar]
  8. CandèsE.J. and GuoF.2002. New multiscale transforms, minimum total variation synthesis: applications to edge‐preserving image reconstruction. Signal Processing82(11), 1519–1543.
    [Google Scholar]
  9. CellaF. and FediM. (2012). Inversion of potential field data using the structural index as weighting function rate decay. Geophysical Prospecting60(2), 313–336.
    [Google Scholar]
  10. ChasseriauP. and ChouteauM.2003. 3D gravity inversion using a model of parameter covariance. Journal of Applied Geophysics52(1), 59–74.
    [Google Scholar]
  11. ChenS.S., DonohoD.L. and SaundersM.A.2001. Atomic decomposition by basis pursuit. Siam Review43(1), 129–159.
    [Google Scholar]
  12. CuiZ., ZhangH. and LuW.2010. An improved smoothed l0‐norm algorithm based on multiparameter approximation function. Proceedings Communication Technology (ICCT), 2010 12th IEEE International Conference on2010, 942–945.
    [Google Scholar]
  13. DaiY.H. and FletcherR.2005. Projected Barzilai‐Borwein methods for large‐scale box‐constrained quadratic programming. Numerische Mathematik100(1), 21–47.
    [Google Scholar]
  14. DaubechiesI., DefriseM. and De MolC.2004. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure & Applied Mathematics57(11), 1413–1457.
    [Google Scholar]
  15. DennisJ.E.Jr., and SchnabelR.B.1983. Numerical methods for unconstrained optimization and nonlinear equations. Prentice‐Hall International, 64–64.
    [Google Scholar]
  16. DimriV.P. and SrivastavaR.P.2005. Fractal modeling of complex subsurface geological structures.
  17. DongA.1990. Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles. Laval Théologique Et Philosophique4(2), 127.
    [Google Scholar]
  18. DonohoD.L.1995. Nonlinear solution of linear inverse problems by wavelet‐vaguelette decomposition. Applied & Computational Harmonic Analysis2(2), 101–126.
    [Google Scholar]
  19. DonohoD.L.2006. For most large underdetermined systems of linear equations the minimal L1‐norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 797–829.
    [Google Scholar]
  20. DonohoD.L. and EladM.2002. Maximal sparsity representation via l 1 minimization. Proceedings of the National Academy of Sciences100.
    [Google Scholar]
  21. DonohoD.L. and JohnstoneI.M.1998. Minimax estimation via wavelet shrinkage. Annals of Statistics26(3), 879–921.
    [Google Scholar]
  22. DurandS. and FromentJ.2001. Artifact free signal denoising with wavelets. Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings 20013686, 3685–3688.
    [Google Scholar]
  23. EidsvikJ., AvsethP., OmreH., MukerjiT. and MavkoG.2004. Stochastic reservoir characterization using prestack seismic data. Geophysics69(4), 978.
    [Google Scholar]
  24. FigueiredoM.A., NowakR.D. and WrightS.J.2007. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. Selected Topics in Signal Processing, IEEE Journal of1(4) 586–597.
    [Google Scholar]
  25. FigueiredoM.A.T. and NowakR.D.2003. An EM algorithm for wavelet‐based image restoration. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society12(12), 906–916.
    [Google Scholar]
  26. FigueiredoM.A.T. and NowakR.D.2005. A bound optimization approach to wavelet‐based image deconvolution. Proceedings IEEE International Conference on Image Processing, II‐782–785.
    [Google Scholar]
  27. FranklinJ.N.1970. Well‐posed stochastic extensions of ill‐posed linear problems ☆. Journal of Mathematical Analysis & Applications31(3), 682–716.
    [Google Scholar]
  28. FullagarP.K.2008. Constrained inversion of geologic surfaces—Pushing the boundaries. Geophysics17(1), 98–105.
    [Google Scholar]
  29. GanguliS.S. and DimriV.P.2013. Interpretation of gravity data using eigenimage with Indian case study: a SVD approach. Journal of Applied Geophysics95(95), 23–35.
    [Google Scholar]
  30. GanguliS.S., NayakG.K., VedantiN. and DimriV.P.2015. A regularized Wiener–Hopf filter for inverting models with magnetic susceptibility. Geophysical Prospecting64(2), 456–468.
    [Google Scholar]
  31. GassoG., RakotomamonjyA. and CanuS.2009. Recovering sparse signals with a certain family of nonconvex penalties and DC programming. IEEE Transactions on Signal Processing57(12), 4686–4698.
    [Google Scholar]
  32. GeH., JacksonM.P.A. and VendevilleB.C.1997. Kinematics and dynamics of salt tectonics driven by progradation. Aapg Bulletin81(3), 398–423.
    [Google Scholar]
  33. GholamiA. and SiahkoohiH.2010. Regularization of linear and non‐linear geophysical ill‐posed problems with joint sparsity constraints. Geophysical Journal International180(2), 871–882.
    [Google Scholar]
  34. GholamiA. and SiahkoohiH.R.2009. A two‐step wavelet‐based regularization for linear inversion of geophysical data. Geophysical Prospecting57(5), 847–862.
    [Google Scholar]
  35. GirouxB., GloaguenE. and ChouteauM.2007. bh _ tomo —A Matlab borehole georadar 2D tomography package ☆. Computers & Geosciences33(1), 126–137.
    [Google Scholar]
  36. GloaguenE., MarcotteD., ChouteauM. and PerroudH.2005. Borehole radar velocity inversion using cokriging and cosimulation. Journal of Applied Geophysics57(4), 242–259.
    [Google Scholar]
  37. GoldsteinT. and OsherS.2009. The Split Bregman method for L1‐regularized problems. Siam Journal on Imaging Sciences2(2), 323–343.
    [Google Scholar]
  38. GribonvalR. and LesageS.2006. A survey of sparse component analysis for blind source separation. Principles, perspectives, and new challenges.
    [Google Scholar]
  39. GuillenA., CalcagnoP., CourriouxG., JolyA. and LedruP.2008. Geological modelling from field data and geological knowledge: part II. Modelling validation using gravity and magnetic data inversion. Physics of the Earth and Planetary Interiors171(1–4), 158–169.
    [Google Scholar]
  40. GuillenA. and MenichettiV.1984. Gravity and magnetic inversion with minimization of a specific functional. Geophysics49(9), 1354–1360.
    [Google Scholar]
  41. HaázI.B.1953. Relations between the potential of the attraction of the mass contained in a finite rectangular prism and its first and second derivatives. Geophysical Transactions II7, 57–66.
    [Google Scholar]
  42. HaasA. and DubruleO.1994. Geostatistical inversion: a sequential method of stochastic reservoir modeling constrained by seismic data. First Break12(11), 561–569.
    [Google Scholar]
  43. HansenT.M., JournelA.G., TarantolaA. and MosegaardK.2006. Linear inverse Gaussian theory and geostatistics. Geophysics71(71), R101–R111.
    [Google Scholar]
  44. HerrmannF.J. and HennenfentG.2008. Non‐parametric seismic data recovery with curvelet frames. Geophysical Journal International173(1), 233–248.
    [Google Scholar]
  45. HuangZ.2012. Multidisciplinary investigation of surface deformation above salt domes in Houston, Texas.
  46. JinS., DamT.V. and WdowinskiS.2013. Observing and understanding the earth system variations from space geodesy. Journal of Geodynamics72(12), 1–10.
    [Google Scholar]
  47. KabanikhinS.I.2008. Definitions and examples of inverse and ill‐posed problems. Journal of Inverse and Ill‐Posed Problems16(4), 317–357.
    [Google Scholar]
  48. KabanikhinS.I., RomanovV.G. and VasinV.V.2007. Pioneering papers by M. M. Lavrentiev. Journal of Inverse and Ill‐Posed Problems15(5), 441–450.
    [Google Scholar]
  49. KimH.J. and KimY.H.2008. Lower and upper bounding constraints of model parameters in inversion of geophysical data. SEG Technical Program Expanded Abstracts27(1), 692.
    [Google Scholar]
  50. KimS.J., KohK., LustigM. and BoydS.2007. An interior‐point method for large‐scale l 1 ‐regularized least squares. IEEE Journal of Selected Topics in Signal Processing1(4), 606–617.
    [Google Scholar]
  51. KrahenbuhlR.A. and LiY.2006. Inversion of gravity data using a binary formulation. Geophysical Journal International167(2), 543–556.
    [Google Scholar]
  52. LastB. and KubikK.1983. Compact gravity inversion. Geophysics48(6), 713–721.
    [Google Scholar]
  53. LiX.‐G., SacchiM.D. and UlrychT.J.1996. Wavelet transform inversion with prior scale information. Geophysics61(5), 1379–1385.
    [Google Scholar]
  54. LiY. and OldenburgD.W.1996. 3‐D inversion of magnetic data. Geophysics61(2), 394–408.
    [Google Scholar]
  55. LiY. and OldenburgD.W.1998. 3‐D inversion of gravity data. Geophysics63(1), 109–119.
    [Google Scholar]
  56. LiY. and OldenburgD.W.2003. Fast inversion of large‐scale magnetic data using wavelet transforms and logarithmic barrier method. Geophysical Journal International152(2), 251–265.
    [Google Scholar]
  57. LiuS., HuX. and LiuT.2014. A stochastic inversion method for potential field data: ant colony optimization. Pure and Applied Geophysics171(7), 1531–1555.
    [Google Scholar]
  58. LorisI., NoletG., DaubechiesI. and DahlenF.A.2007. Tomographic inversion using l1‐orm regularization of wavelet coefficients. Geophysical Journal International170(1), 359–370.
    [Google Scholar]
  59. LorisI., NoletG., DaubechiesI. and DahlenT.2006. Tomographic inversion using L1‐regularization of Wavelet Coefficients. Proceedings AGU Fall Meeting.
    [Google Scholar]
  60. LustigM., DonohoD. and PaulyJ.M.2007. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine58(6), 1182–1195.
    [Google Scholar]
  61. MallatS.G. and ZhangZ.1993. Matching pursuits with time‐frequency dictionaries. IEEE Transactions on Signal Processing41(12), 3397–3415.
    [Google Scholar]
  62. MohimaniH., Babaie‐ZadehM. and JuttenC.2009. A fast approach for overcomplete sparse decomposition based on smoothed l 0 norm. IEEE Transactions on Signal Processing57(1), 289–301.
    [Google Scholar]
  63. MosegaardK. and TarantolaA.1995. Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth100(B7), 12431–12447.
    [Google Scholar]
  64. NettletonL.L.1976. Gravity and Magnetics in Oil Prospecting. McGraw‐Hill Book Co.
    [Google Scholar]
  65. NocedalJ. and WrightS.2006. Numerical optimization. Springer Science & Business Media.
    [Google Scholar]
  66. OldenburgD.W., McgillivrayP.R. and EllisR.G.1993. Generalized subspace methods for large‐scale inverse problems. Geophysical Journal International114(1), 12–20.
    [Google Scholar]
  67. OldenburgD.W. and PrattD. A.2007. Geophysical inversion for mineral exploration. A decade of progress in theory and practice.
    [Google Scholar]
  68. PilkingtonM.1997. 3‐D magnetic imaging using conjugate gradients. Geophysics62(4), 1132–1142.
    [Google Scholar]
  69. PilkingtonM.2008. 3D magnetic data‐space inversion with sparseness constraints. Geophysics74(1), L7.
    [Google Scholar]
  70. PortniaguineO. and ZhdanovM.S.1999. Focusing geophysical inversion images. Geophysics64(3), 874–887.
    [Google Scholar]
  71. PortniaguineO. and ZhdanovM.S.2002a. 3‐D magnetic inversion with data compression and image focusing. Geophysics67(5), 1532–1541.
    [Google Scholar]
  72. PortniaguineO.N. and ZhdanovM.S.2002b. 3‐D focusing inversion of CSMT data. Methods in Geochemistry and Geophysics35, 173–191.
    [Google Scholar]
  73. QiuW., ZhouJ., ZhaoH.Z. and FuQ.2014. Fast sparse reconstruction algorithm for multidimensional signals. Electronics Letters50(22), 1583–1585.
    [Google Scholar]
  74. RouthP.S., QuL., SenM.K. and AnnoP.D.2007. Inversion for non‐smooth models with physical bounds. SEG Technical Program Expanded Abstracts26, 1795.
    [Google Scholar]
  75. ShamsipourP., MarcotteD. and ChouteauM.2012. Integrating multiscale parameters information into 3D stochastic magnetic anomaly inversion. Geophysics77(4), 85.
    [Google Scholar]
  76. ShamsipourP., MarcotteD., ChouteauM. and AllardM.2011. Stochastic inversion of a gravity field on multiple scale parameters using surface and borehole data. Geophysical Prospecting59(6), 998–1012.
    [Google Scholar]
  77. ShamsipourP., MarcotteD., ChouteauM. and KeatingP.2010. 3D stochastic inversion of gravity data using cokriging and cosimulation. Geophysics75(1), I1.
    [Google Scholar]
  78. ShamsipourP., MarcotteD., ChouteauM., RivestM. and BoucheddaA.2013. 3D stochastic gravity inversion using nonstationary covariances. Geophysics78(2), 15–G24.
    [Google Scholar]
  79. ShamsipourP., SchetselaarE., BellefleurG. and MarcotteD.2014. 3D stochastic inversion of potential field data using structural geologic constraints. Journal of Applied Geophysics111, 173–182.
    [Google Scholar]
  80. ShawR.K. and AgarwalB.N.P.1997. A generalized concept of resultant gradient to interpret potential field maps. Geophysical Prospecting45(6), 1003–1011.
    [Google Scholar]
  81. SilvaJ.B.C. and Barbosa2006. Interactive gravity inversion. Geophysics71(1), J1–J9.
    [Google Scholar]
  82. TarantolaA.2005. Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics.
    [Google Scholar]
  83. TibshiraniR.1996. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society58(3), 267–288.
    [Google Scholar]
  84. TikhonovA.N. and ArseninV.Y.1977. Solutions of Ill‐Posed Problems. Washington, DC: Winston.
    [Google Scholar]
  85. TikhonovA.N., GoncharskyA.V., StepanovV.V. and YagolaA.G.2013. Numerical Methods for the Solution of Ill‐Posed Problems. Kluwer Academic Publishers.
    [Google Scholar]
  86. Torres‐VerdinC., VictoriaM., MerlettiG. and PendrelJ.1999. Trace‐based and geostatistical inversion of 3‐D seismic data for thin‐sand delineation: an application in San Jorge Basin, Argentina. The Leading Edge18(9), 1070–1077.
    [Google Scholar]
  87. TroppJ.A. and GilbertA.C.2007. Signal recovery from random measurements via orthogonal matching pursuit. Information Theory IEEE Transactions on53(12), 4655–4666.
    [Google Scholar]
  88. WangY., CaoJ., YuanY., YangC. and XiuN.2009. Regularizing active set method for nonnegatively constrained ill‐posed multichannel image restoration problem. Applied Optics48(7), 1389.
    [Google Scholar]
  89. WangY., FanS. and FengX.2007. Retrieval of the aerosol particle size distribution function by incorporating a priori information. Journal of Aerosol Science38(8), 885–901.
    [Google Scholar]
  90. WangY., LiuP., LiZ., SunT., YangC. and ZhengQ.2013. Data regularization using Gaussian beams decomposition and sparse norms. Journal of Inverse and Ill‐Posed Problems21(1), 1–23.
    [Google Scholar]
  91. WangY., YangC. and CaoJ.2012. On Tikhonov regularization and compressive sensing for seismic signal processing. Mathematical Models and Methods in Applied Sciences22(2), 1150008.
    [Google Scholar]
  92. ZhangY., YanJ., LiF., ChenC., MeiB., JinS.et al. 2015. A new bound constraints method for 3‐D potential field data inversion using Lagrangian multipliers. Geophysical Journal International201(1), 267–275.
    [Google Scholar]
  93. ZhdanovM.S.2002. Geophysical Inverse Theory and Regularization Problems. Elsevier.
    [Google Scholar]
  94. ZhdanovM.S.2009. New advances in regularized inversion of gravity and electromagnetic data. Geophysical Prospecting57(4), 463–478.
    [Google Scholar]
  95. ZhdanovM.S., EllisR. and MukherjeeS.2004, Three‐dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics69(4), 925–937.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12591
Loading
/content/journals/10.1111/1365-2478.12591
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error