1887
Volume 67, Issue 8
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Western Anatolia hosts many low‐to‐moderate and high‐temperature geothermal sources in which active faults play a dominant role to control the recharge and the discharge of geothermal fluid. In this study, we used the two‐dimensional geoelectric structure of Kütahya Hisarcık geothermal field, and created a conceptual hydrogeophysical model that includes faults, real topographical variations and geological units. The temperature distribution and fluid flow pattern are also investigated. The depth extension of Hisarcık Fault, electrical basement and low resistivity anomalies related to the presence of geothermal fluid are determined by using resistivity studies in the area. Numerical simulations suggest that Hisarcık fault functioning as a fluid conduit primarily enables hot fluid to be transported from depth to the surface. It is shown that the locations of predicted outflow vents coincide with those of hot springs in the area.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12826
2019-08-12
2020-03-30
Loading full text...

Full text loading...

References

  1. Akkuşİ., AkıllıH., CeyhanS., DilemreA. and TekinZ.2005. Turkey geothermal resources inventory. Directorate of Mineral Research and Exploration Institute of Turkey (MTA) Ankara, Turkey.
  2. AlumbaughD.L. and NewmanG.A.2000. Image appraisal for 2‐D and 3‐D electromagnetic inversion. Geophysics65, 1455–1467.
    [Google Scholar]
  3. Arango‐GalvanC., Prol‐LedesmaR.M., Flores‐MarquezE.L., CanetC. and EstradaR.E.V.2011. Shallow submarine and subaerial, low‐enthalpy hydrothermal manifestations in Punta Banda, Baja California, Mexico: geophysical and geochemical characterization. Geothermics40, 102–111.
    [Google Scholar]
  4. Arango‐GalvanC., Prol‐LedesmaR.M. and Torres‐VeraM.A.2015. Geothermal prospects in the Baja California Peninsula. Geothermics55, 39–57.
    [Google Scholar]
  5. Balkaya, Ç., KayaM.A. and GöktürklerG.2009. Delineation of shallow resistivity structure in the city of Burdur, SW Turkey by vertical electrical sounding measurements. Environmental Geology57, 571–581.
    [Google Scholar]
  6. BalkayaÇ., GöktürklerG., ErhanZ. and EkinciY.L.2012. Exploration for a cave by magnetic and electrical resistivity surveys: ayvacık Sinkhole example, Bozdağ, İzmir (western Turkey). Geophysics77, B135–B146.
    [Google Scholar]
  7. BenseV.F., PersonM.A., ChaudharyK., YouY., CremerN. and SimonS.2008. Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophysical Research Letters35, L24406.
    [Google Scholar]
  8. BibbyH.M., RiskG.F., CaldwellT.G. and HeiseW.2009. Investigations of deep resistivity structures at the Wairakei geothermal field. Geothermics38, 98–107.
    [Google Scholar]
  9. BinleyA., HubbardS.S., HuismanJ.A., RevilA., RobinsonD.A., KaminiS.et al. 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research51, 3837–3866.
    [Google Scholar]
  10. BulutY., AltınayA. and DoğanB.1991. Şaphane‐Gediz‐Hisarcık‐Emet (Kütahya) and adjacent area detailed Tertiary basin geological prospecting and coal possibilities. Directorate of Mineral Research and Exploration Institute of Turkey (MTA) report no: 9368, Ankara, Turkey.
  11. Candansayar, M.E. and BaşokurA.T.2001. Detecting small‐scale targets by the 2D inversion of two‐sided three‐electrode data: application to an archaeological survey. Geophysical Prospecting49, 13–25.
    [Google Scholar]
  12. ÇiftçiN.B. and BozkurtE.2010. Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Research22, 846–873.
    [Google Scholar]
  13. DrahorM.G. and BergeM.A.2006. Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey. Geothermics35, 302–320.
    [Google Scholar]
  14. Düşünür DoğanD.2014. Investigation of fault‐related small‐scale fluid flow in geothermal fields by numerical modeling. Turkish Journal of Earth Science23, 67–79.
    [Google Scholar]
  15. Düşünür DoğanD. and ÜnerS.2019. Numerical simulation of groundwater flow and temperature distribution in Aegean Coast of Turkey. Journal of Earth System Science128, 154.
    [Google Scholar]
  16. El‐QadyG., SakamatoC. and UshijimaK.1999. 2‐D inversion of VES data in Saqqara archaeological area, Egypt. Earth Planets Space51, 1091–1098.
    [Google Scholar]
  17. El‐QadyG., UshijimaK. and AhmadE.S.2000. Delineation of a geothermal reservoir by 2D inversion of resistivity data at Hamam Faraun area, Sinai, Egypt: Proceedings World Geothermal Congress, Kyushu‐Tohoku, Japan, 1103–1108.
  18. EmreÖ., DumanT.Y., ÖzalpS., ElmacıH., OlgunŞ. and ŞaroğluF.2013. Active Fault Map of Turkey with and Explanatory Text. General Directorate of Mineral Research and Exploration, Ankara, Turkey.
    [Google Scholar]
  19. ErdoğanE. and CandansayarM.E.2017. The conductivity structure of the Gediz Graben geothermal area extracted from 2D and 3D magnetotelluric inversion: synthetic and field data applications. Geothermics65, 170–179.
    [Google Scholar]
  20. GemiciÜ., TarcanG., ÇolakM. and HelvacıC.2004. Hydrochemical and hydrological investigations of the thermal waters in the Emet area (Kütahya, Turkey). Applied Geochemistry19, 105–117.
    [Google Scholar]
  21. GöktürklerG., SalkM. and SariC.2003. Numerical modeling of the conductive heat transfer in western Anatolia. Journal of the Balkan Geophysical Society6, 1–15.
    [Google Scholar]
  22. HermansT., NguyenF., RobertT. and RevilA.2014. Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. Energies7, 5083–5118.
    [Google Scholar]
  23. HermansT., NguyenF., KlepikovaM., DassarguesA. and CaersJ.2018. Uncertainty quantification of medium‐term heat storage from short‐term geophysical experiments using Bayesian evidential learning. Water Resources Research54, 2931–2948.
    [Google Scholar]
  24. İlkışıkM.1995. Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics244,175–184.
    [Google Scholar]
  25. KayaM.A., ÖzürlanG. and BalkayaÇ.2015. Geoelectrical investigation of seawater intrusion in the coastal urban area of Çanakkale, NW Turkey. Environmental Earth Science73, 1151–1160.
    [Google Scholar]
  26. KıyakA., KaravulC., GülenL., PekşenE. and KılıçA.R.2015. Assessment of geothermal energy potential by geophysical method: Nevşehir Region, Central Anatolia. Journal of Volcanology and Geothermal Research295, 55–64.
    [Google Scholar]
  27. KoçyiğitA., YusufoğluH. and BozkurtE.1999. Evidence from the Gediz graben for episodic two‐stage extension in western Turkey. Journal of Geological Society156, 605–616.
    [Google Scholar]
  28. MagriF., AkarT., GemiciU. and PekdegerA.2010. Deep geothermal groundwater flow in the Seferihisar–Balçova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes. Geofluids10, 388–405.
    [Google Scholar]
  29. MagriF., AkarT., GemiciU. and PekdegerA.2012. Numerical investigations of fault‐induced seawater circulation in the Seferihisar‐Balçova geothermal system, western Turkey. Hydrogeology Journal20, 103–118.
    [Google Scholar]
  30. MenkeW.1984. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, New York, NY.
    [Google Scholar]
  31. MertoğluO., ŞimşekŞ., DağıstanH., BakırN. and DoğduN.2010. Geothermal country update report of Turkey (2005‐2010). Proceedings World Geothermal Congress 2010, Bali, Indonesia, April.
  32. McCluskyS., BalassanianS.S., BarkaA., DemirC., ErgintavS., GeorgievI.et al. 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysics Research105, 5695–5719.
    [Google Scholar]
  33. McKennaJ.R and BlackwellD.D.2004. Numerical modeling of transient Basin and range extensional geothermal systems. Geothermics33, 457–476.
    [Google Scholar]
  34. MoretG.J.M., KnollM.D., BarrashW. and ClementW.P.2006. Investigating the stratigraphy of an alluvial aquifer using crosswell seismic traveltime tomography. Geophysics71, B63–B73.
    [Google Scholar]
  35. MutluH. and GüleçN.1998. Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia (Turkey). Journal of Volcanology and Geothermal Research85, 495–515.
    [Google Scholar]
  36. OrtiF., RosellL., Garcia‐VeigasJ. and HelvacıC.2016. Sulfate‐borate association (glauberite‐probertite) in the Emet Basin: implications for evaporate sedimentology (Middle Miocene, Turkey). Journal of Sedimentary Research86, 448–475.
    [Google Scholar]
  37. ÖzürlanG. and ŞahinM.H.2004. Integrated geophysical investigations in the Hisar geothermal field, Demirci, western Turkey. Geothermics35, 110–122.
    [Google Scholar]
  38. ÖzürlanG., CandansayarM.E. and ŞahinM.H.2006. Deep resistivity structure of the Dikili‐Bergama region, west Anatolia revealed by two‐dimensional inversion of vertical electrical sounding data. Geophysical Prospecting54, 187–197.
    [Google Scholar]
  39. PfisterM., LadislausR. and ŞakirS.1988. Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension. Tectonophysics291, 77–89.
    [Google Scholar]
  40. RobertT., DassarguesA., BrouyéreS., KaufmannO., HalletV. and NguyenF.2011. Assessing the contribution of Electrical Resistivity Tomography (ERT) and Self‐Potential (SP) methods for a water well drilling program in fractured/karstified limestone. Journal of Applied Geophysics75, 42–53.
    [Google Scholar]
  41. RossH.P., GreenD.J. and MackelprangC.E.1996. Electrical resistivity surveys, Ascension Island, South Atlantic Ocean. Geothermics25, 489–506.
    [Google Scholar]
  42. ScheidtC., LewisL. and CaersJ.2018. Quantifying Uncertainty in Subsurface Systems. Wiley, New York, NY.
    [Google Scholar]
  43. SimmsM.A. and GarvenG.2004. Thermal convection in faulted extensional sedimentary basins: theoretical results from finite‐element modeling. Geofluids4, 109–130.
    [Google Scholar]
  44. SuparnoS., DaudY., RosidS., DjuhanaD. and SofyanY.2010. New interpretation of DC resistivity data in the Sibayak geothermal field, Indonesia. Proceedings World Geothermal Congress, Bali, Indonesia, 1–6.
  45. ŞengörA.M.C., SatırM. and AkkökR.1984. Timing of tectonic events in the Menderes Massif, western Turkey: implications for tectonic evolution and evidence for Pan‐African basement in Turkey. Tectonics3, 693–707.
    [Google Scholar]
  46. UchidaT. and MurakamiY.1990. Development of a FORTRAN code for the two‐dimensional Schlumberger inversion. Geological Survey of Japan Open‐File Report no. 150.
  47. Ulugergerli, E.U. and Akçaİ.2006. Detection of cavities in gypsum. Journal of the Balkan Geophysical Society9, 8–19.
    [Google Scholar]
  48. UshijimaK., TagomoriK. and PeltonW.H.2000. 2D inversion of VES and MT data in a geothermal area. Proceedings World Geothermal Congress, Kyushu‐Tohoku, Japan, 1909–1914.
  49. WaplesD.W. and WaplesJ.S.2004. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Natural Resources Research13, 97–122.
    [Google Scholar]
  50. Van HoordeM., HermansT., DumontG. and NyugenF.2017. 3D electrical resistivity tomography of karstified formations using cross‐line measurements. Engineering Geology220, 123–132.
    [Google Scholar]
  51. YangJ., LargeR.R. and BullS.W.2004. Factors controlling free thermal convection in faults in sedimentary basins: implications for the formation of zinc‐lead mineral deposits. Geofluids4, 237–247.
    [Google Scholar]
  52. YangJ., LatychevK. and EdwardsR.N.1998. Numerical computation of hydrothermal fluid circulation in fractured Earth structures. Geophysical Journal International135, 627–649.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12826
Loading
/content/journals/10.1111/1365-2478.12826
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Fluid flow , Inversion , Kütahya‐Turkey , Modelling , Numerical study , Resistivity and Temperature
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error