1887
Volume 68, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The study examines the Egyptian Red Sea shelf and throws more light on the structural set‐up and tectonics controlling the general framework of the area and nature of the crust. Herein, an integrated study using gravity and magnetic data with the available seismic reflection lines and wells information was carried out along the offshore area. The Bouguer and reduced‐to‐pole aeromagnetic maps were processed and reinterpreted in terms of rifting and plate tectonics. The qualitative interpretation shows that the offshore area is characterized by positive gravity everywhere that extremely increases towards the centre of the graben, supporting the presence of an intrusive zone below the axial/main trough. The gravity data were confirmed by the presence of high magnetic amplitudes, magnetic linearity and several dipoles concentrated along the rift axis for at least 250 km. The lineament analysis indicates widespread of the Erythrean (Red Sea) trend that was offset/cut by transform faults in the NE direction (Aqaba). The tectonic model suggests the presence of one tensional (N65°E) and two compressional (N15°W, N30°W) phases of tectonism, resulted in six cycles of deformations, classified into three left lateral (N35°E, N15°E and N–S) and three right lateral (N85°W, N45°W and N60°W). The basement relief map reveals a rough basement surface that varies in depth between 1 and 5.6 km. It outlines several offshore basins, separated from each other by ridges. The models show that the basement consists of tilted fault blocks, which vary greatly in depth and composition and slopes generally to the west. They indicate that the coastal plain is underlain by acidic basement blocks (continental crust) with no igneous activity while suggesting elevated basic materials (oceanic crust) below the rift axis. The study suggests that northern Red Sea forms an early stage of seafloor spreading or at least moved past the late stage of continental rifting.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12939
2020-02-19
2024-04-26
Loading full text...

Full text loading...

References

  1. Abd El‐MotaalE.1993. Structural studies on the sedimentary rocks in the Red Sea coastal plain between lat.25°45′ and 26°00′ N. Egypt. PhD thesis, Geology Department, Faculty of Science, Al‐Azhar University, 1–247.
  2. Abdel‐GawadM.1969. Geological structures of the Red Sea inferred from satellite pictures. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Chap. 5, 25–37. Springer‐Verlag, New York.
    [Google Scholar]
  3. Abu El‐AtaA.S.A.1988. The relation between the local tectonics of Egypt and plate tectonics of the surrounding regions, using geophysical data and geological data. Proceeding of the 6th Annual Meeting of Egyptian Geophysical Society, Cairo, pp. 92–112.
  4. AffleckL.1963. Magnetic anomaly trend and spacing patterns. Geophysics28, 379–395.
    [Google Scholar]
  5. Al‐DameghK., SandvolE. and BarazangiM.2005. Crustal structure of the Arabian plate: New constraints from the analysis of teleseismic receiver functions. Earth and Planetary Science Letters231, 177–196.
    [Google Scholar]
  6. AllanT.D.1970. Magnetic and gravity fields over the Red Sea. Philosophical Transactions of the Royal Society A267, 153–180.
    [Google Scholar]
  7. AndersonE.M.1951. The Dynamics of Faulting and Dyke Formation with Applications to Britain. Edinburgh, Oliver and Boyd, 206 p.
    [Google Scholar]
  8. AugustinN., DeveyC.W., Van der ZwanF.M., FeldensP., TominagaM., BantanR.A.et al. 2014. The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters395, 217–230.
    [Google Scholar]
  9. Awad, M.B., El‐Abd, Y. and HagE.1990. Model studies in Mersa Alam offshore area, Red Sea, Egypt, in view of gravity data. 10th Exploration Seminar, EGPC. Cairo. pp 1–13.
  10. AzabA., El‐KhadragyA. and SolimanS.A.2015. Egyptian Crust: A structural modeling, based on gravity and seismic data. Journal of American Science11, 216–229.
    [Google Scholar]
  11. BackerB.H.1970. The structural pattern of the Afro‐Arabian rift system in relation to plate tectonics. Philosophical Transactions of the Royal Society A267, 383–391.
    [Google Scholar]
  12. BäckerB.H. and SchoellM.1972. New deeps with brines and metalliferous sediments in the Red Sea. Nature Physical Science (London)240, 153–158.
    [Google Scholar]
  13. BadawyA., MohamedA.M.S. and Abu‐AliN.2008. Seismological and GPS constraints on Sinai sub‐plate motion along the Suez rift. Studia Geophysica et Geodaetica52, 397–412.
    [Google Scholar]
  14. BarakatH. and MillerP.M.1984. Geology and petroleum exploration, Safaga concession, Northern Red Sea, Egypt. 7th Exploration Seminar EGPC, Cairo, pp. 1–43.
  15. BarnesA.E.2014. Is curvature overrated?First Break32, 65–69.
    [Google Scholar]
  16. BellR.E. and WattsA.B.1986. Evaluation of the BGM‐3 sea gravity meter system onboard R/V Conrad. Geophysics51, 1480–1493.
    [Google Scholar]
  17. BelloR., OfohaC.C. and EdahH.2017. Qualitative and quantitative interpretation of parts of onshore Niger Delta, Nigeria, using high resolution aeromagnetic data. Geosciences7, 77–88.
    [Google Scholar]
  18. Ben‐AvrahamZ.GarfunkelZ. and LazarM.2008. Geology and evolution of the southern Dead Sea Fault with emphasis on subsurface structure. Annual Review of Earth and Planetary Sciences36, 357–387.
    [Google Scholar]
  19. BertramC., KrätschellA., O'BrienK., BrücKmannW., ProelssA.et al. 2011. Metalliferous sediments in the Atlantis II Deep‐assessing the geological and economic resource potential and legal constraints. Resources Policy36, 315–329.
    [Google Scholar]
  20. BhattacharyyaB.K.1966. Continuous spectrum of the total‐magnetic field anomaly due to a rectangular prismatic body. Geophysics31, 97–121.
    [Google Scholar]
  21. BlakelyR.J.1988. Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. Journal of Geophysical Research93, 817–832.
    [Google Scholar]
  22. BlankH.R., MooneyW.D., HealyJ.H., GettingsM.A. and LamsonR.J.1986. A seismic refraction interpretation of the eastern margin of the Red Sea depression, Southwest Saudi Arabia. U. S. Geological Survey Open‐File Report20, 86–257.
    [Google Scholar]
  23. BolerF.M.1978. Aeromagnetic measurements, magnetic source depths, and the Curie‐point isotherm in the Vale‐Owyhee, Oregon, Geothermal Area. MS thesis, Oregon State University.
  24. BonattiE.1985. Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature316, 33–37.
    [Google Scholar]
  25. BonattiE., ColantoniP., Della VedovaB. and TavianiM.1984. Geology of the Red Sea transitional zone (22°N–25°N). Oceanol Acta7, 385–398.
    [Google Scholar]
  26. BosworthW.2015. Geological evolution of the Red Sea: Historical background, review, and synthesis. In: The Red Sea (eds N.M.A.Rasul and I.C.F.Stewart), pp. 45–78. Springer Earth System Sciences, Springer‐Verlag, Berlin, Heidelberg.
    [Google Scholar]
  27. BosworthW. and BurkeK.2005. Evolution of the Red Sea‐Gulf of Aden rift system. In: Petroleum Systems of Divergent Continental Margin Basins (eds P.J.Post, N.C.Rosen, D.L.Olson, S.L.Palmes, K.T.Lyons and G.B.Newton). Gulf Coast Section SEPM Foundation, 25th Bob F. Perkins Annual Research Conference, Houston, 4–7 December 2005, CD‐ROM, 342–372.
    [Google Scholar]
  28. BosworthW. and DurocherS.2017. Present‐day stress fields of the Gulf of Suez, Egypt: based on exploratory well data: non‐uniform regional extension and its relation to inherited structures and local plate motion. Journal of African Earth Sciences136, 136–147.
    [Google Scholar]
  29. BosworthW. and McClayK.2001. Structural and stratigraphic evolution of the Gulf of Suez Rift, Egypt: a synthesis. In Peri‐Tethys Memoir 6: 42 Peri‐Tethyan Rift/Wrench Basins and Passive Margins (eds P.A.Ziegler, W.Cavazza, A.H.F.Robertson and S.Crasquin‐Soleau), Vol. 186, pp. 567–606. Mémoires du Muséum National d'Histoire Naturelle.
    [Google Scholar]
  30. BosworthW. and StreckerM.1997. Stress field changes in the Afro‐Arabian rift system during the Miocene to recent period. Tectonophysics278, 47–62.
    [Google Scholar]
  31. BosworthW., TavianiM. and RasulN.M.A.2019. Neotectonics of the Red Sea, Gulf of Suez and Gulf of Aqaba. In: Geological Setting, Palaeoenvironment and Archaeology of the Red Sea (eds N.Rasul and I.Stewart). Springer, Cham.
    [Google Scholar]
  32. BotzR., SchmidtM., KusJ., Ostertag‐HenningC., EhrhardtA., OlgunN.et al. 2011. Carbonate recrystallization and organic matter maturation in heat‐affected sediments from the Shaban Deep, Red Sea. Chemical Geology280, 126–143.
    [Google Scholar]
  33. BoulosF.K.1990. Some aspects of the geophysical regime of Egypt in relation to heat flow, groundwater and microearthquakes. In The Geology of Egypt (ed R.Said), pp. 61–89. A.A. Balkema, Rotterdam.
    [Google Scholar]
  34. ByerlyP.E. and StoltR.H.1977. An attempt to define the Curie point isotherm in northern and central Arizona. Geophysics42, 1394–1400.
    [Google Scholar]
  35. CarsonM.G. and KrsM.1976. Geophysical and Geological evidence of the relationship of Red Sea transverse tectonics to ancient fractures. Geological Society of America Bulletin87, 169–181.
    [Google Scholar]
  36. CevallosC., KovacP. and LoweS.J.2013. Application of curvatures to airborne gravity gradient data in oil exploration. Geophysics78, G81–G88.
    [Google Scholar]
  37. CochranJ. and KarnerG.D.2007. Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: the transition from rifting to drifting. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup (eds G.D.Karner, G.Manatschal and L.M.Pinheiro), Vol. 282, pp. 265–289. Special Publications, Geological Society, London.
    [Google Scholar]
  38. CochranJ.R.1983. A model for the development of the Red Sea. American Association of Petroleum Geologists67, 41–69.
    [Google Scholar]
  39. CochranJ.R.2005. Northern Red Sea: nucleation of an oceanic spreading center within a continental rift. Geochemistry, Geophysics, Geosystems, 6, Paper Q03006.
  40. CochranJ.R. and Martinez, F.1988. Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics153, 25–53.
    [Google Scholar]
  41. CochranJ.R., GaulierJ.M. and LepichonX.1991. Crustal structure and the mechanism of extension in the northern Red Sea: constraints from gravity anomalies. Tectonics10, 1018–1037.
    [Google Scholar]
  42. CochranJ.R., RtinezF., StecklerM.S. and HobartM.A.1986. Conrad Deep: a new northern Red Sea deep. Origin and implications for continental rifting. Earth and Planetary Science Letters78, 18–32.
    [Google Scholar]
  43. ColemanR.G.1974. Geologic background of the Red Sea. In: Initial Reports of the Deep Sea Drilling Project (eds R.B.Whitmarsh, O.E.Weser, D.A.Ross, et al.), Vol. 23, pp. 813–819. Government Printing Office, Washington.
    [Google Scholar]
  44. ColemanR.G.1993. Geologic evolution of the Red Sea. Oxford Monographs on Geology and Geophysics, Vol. 24, pp. 1–186. Oxford University Press, Oxford.
    [Google Scholar]
  45. ConnardG., CouchR. and M. GemperleM.1983. Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics48, 376–390.
    [Google Scholar]
  46. CooperG.R.J.2013. The removal of unwanted edge contours from gravity datasets. Exploration Geophysics44, 42–47.
    [Google Scholar]
  47. CousteauJ.Y., NesteroffW. and TazieffH.1953. Coupes transversales de la Mer Rouge, Comptus Rendus Congres Geologique International, 19th Session, Sect. IV.
  48. DaggettP., MorganH., BoulosP., HenninF.K., El‐SherifS.F., El‐SayedA.A.et al. 1986. Seismicity and active tectonics of the Egyptian Red Sea margin and the northern Red Sea. Tectonophysics125, 313–324.
    [Google Scholar]
  49. DrakeC.L. and GirdlerR.W.1964. A geophysical study of the Red Sea. Geophysical Journal International8, 473–495.
    [Google Scholar]
  50. DubertretL., HepworthJ.V. and DelanyF.M.1970. Review of structural geology of the red sea and surrounding areas [and discussion]. Philosophical Transactions of the Royal Society of London A267, 9–20.
    [Google Scholar]
  51. EgloffF., RihmR., MakrisJ., IzzeldinY.A., BobsienM., MeierK.et al. 1991. Contrasting structural styles of the eastern and western margins of the southern Red Sea: the 1988 SONNE experiment. Tectonophysics198, 329–353.
    [Google Scholar]
  52. Egyptian General Petroleum Corporation, EGPC . 1980. Bouguer gravity map of Egypt, Cairo, Maadi.
  53. EhrhardtA. and HübscherC.2015. The northern Red Sea in transition from rifting to drifting – lessons learned from ocean deeps. In: The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin (eds N.M.A.Rasul and I.C.F.Stewart), pp. 99–121. Springer‐Verlag, Berlin, Heidelberg.
    [Google Scholar]
  54. EhrhardtA., HübscherC. and GajewskiD.2005. Conrad Deep, northern Red Sea: development of an early stage ocean deep within the axial depression. Tectonophysics411, 19–40.
    [Google Scholar]
  55. FarhoudK.2009. Accommodation zones and tectono‐stratigraphy of the Gulf of Suez, Egypt: a contribution from aeromagnetic analysis. GeoArabia14, 139–162.
    [Google Scholar]
  56. FeinsteinS., KohnB.P., StecklerM.S. and EyalM.1996. Thermal history of the eastern margin of the Gulf of Suez, I. Reconstruction from borehole temperature and organic maturity measurements. Tectonophysics266, 203–220.
    [Google Scholar]
  57. FreundR.1965. A model of the structural development of Israel and adjacent areas since Upper Cretaceous times. Geological Magazine102, 189–205.
    [Google Scholar]
  58. GaulierJ.M., Le PichonX., LyberisN., AvedikF., GelL., MorettiI.et al. 1988. Seismic study of the crust of the northern Red Sea and Gulf of Suez. Tectonophysics153, 55–88.
    [Google Scholar]
  59. GaulierJ.M., Le PichonX.T., LyberisN., AvedikF., GelyL. and MorettiI.1986. New refraction data on the Northern Red Sea‐Gulf of Suez area Eos. Transactions of the American Geophysical Union67, 1208–1209.
    [Google Scholar]
  60. GettingsM.E., BlankH.R., MooneyW.D. and HealyJ.H.1986. Crustal structure of southwestern Saudi Arabia. Journal of Geophysical Research91, 6491–6512.
    [Google Scholar]
  61. GirdlerR.W.1965. The role of translational and rotational movements in the formation of the Red Sea and Gulf of Aden. The world rift system. Canada Geological Survey Paper66‐14.
    [Google Scholar]
  62. GirdlerR.W.1969. The Red Sea. A geophysical background. In: Hot Brines and Recent Heavy Metal Deposits in the Red Sea (eds E.T.Degens and D.A.Ross), pp. 38–58. Springer‐Verlage, New York.
    [Google Scholar]
  63. GirdlerR.W.1970. A review of Red Sea heat flow. Philosophical Transactions of the Royal Society of London267, 191‐203.
    [Google Scholar]
  64. GirdlerR.W. and EvansT.R.1977. Red Sea heat flow. Geophysical Journal International51, 245–251.
    [Google Scholar]
  65. GirdlerR.W. and StyleP.1974. Two stage Red Sea floor spreading. Nature244, 7–11.
    [Google Scholar]
  66. HaaseKM., MüheR. and StoffersP.2000. Magmatism during extension of the lithosphere: geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chemical Geology166, 225–239.
    [Google Scholar]
  67. HaenelR.1972. Heat flow measurements in the Red Sea and the Gulf of Aden. Zeit Geophysics38, 1035–1047.
    [Google Scholar]
  68. HammerS.1939. Terrain corrections for gravimeter stations. Geophysics4, 184–194.
    [Google Scholar]
  69. HartmannM.1980. Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1965. Deep Sea Research Part A. Oceanographic Research Papers27, 161–164, IN3–IN4, 165–171.
    [Google Scholar]
  70. HemptonM.R.1987. Constraints on Arabia plate motion and extensional history of the Red Sea. Tectonics6, 687–705.
    [Google Scholar]
  71. HosneyH.2001. An introduction to the geothermal regime and its tectonic implications of the Suez Rift System. Journal of Environmental Sciences22, 157–182.
    [Google Scholar]
  72. HosneyH.M. and MorganP.2000. Geothermal behavior and tectonic setting in the Northern Gulf of Suez, Egypt. Journal of Environmental Sciences19, 55–74.
    [Google Scholar]
  73. HubbertM.K.1951. Mechanical basis for certain familiar geologic structures. Geological Society of America Bulletin62, 355–372.
    [Google Scholar]
  74. InglisC.1913. Stresses in a plate due to the presence of cracks and sharp corners. Spring Meeting, Institution of Naval Architects, pp. 219–241.
  75. IzzeldinA.Y.1982. On the structure and evolution of the Red Sea. PhD thesis, IPG, Strasbourg, France, 164 p.
  76. JoffeS. and GarfunkelZ.1987. Plate kinematics of the circum Red Sea – a re‐evaluation. Tectonophysics141, 5–22.
    [Google Scholar]
  77. KamelK.1990. Gravity map. In: The Geology of Egypt (ed R.Said), pp. 45–50. A.A. Balkema, Rotterdam.
    [Google Scholar]
  78. KorratI.M., HusseinH.M., MarzoukI., IbrahimE.M., Abdel‐FattahR. and HurukawaN.2006. Seismicity of the northernmost part of the Red Sea (1995‐1999). Acta Geophysica54, 33–49.
    [Google Scholar]
  79. KozdrojW., KattanF.H., KadiK.A., Al‐AlfyZ.S.A., OweissK.A., MansourM.M.et al. 2011. SGS‐EMRA trans‐Red Sea project for geological and structural correlation between the central Eastern Desert Terrane (Egypt) and Midyan Terrane (Saudi Arabia). Saudi Geological Survey Open‐File Report SGS‐TR‐2011‐5.
  80. LeeY.W.1960. Statistical Theory of Communication, pp. 1–75. Willey and Sons, New York.
    [Google Scholar]
  81. LiX.2015. Curvature of a geometric surface and curvature of gravity and magnetic anomalies. Geophysics80, G15–G26.
    [Google Scholar]
  82. MadenN.2010. Curie point depth from spectral analysis of magnetic data in Erciyes Stratovolcano (Central Turkey). Pure and Applied Geophysics167, 349–358.
    [Google Scholar]
  83. MadenN.2011. One‐dimensional thermal modeling of the Eastern Pontides Orogeni Belt (NE Turkey). Pure and Applied Geophysics169, 235–248.
    [Google Scholar]
  84. MakrisJ. and RihmR.1991. Shear‐controlled evolution of the Red Sea: pull apart model. Tectonophysics198, 441–466.
    [Google Scholar]
  85. MakrisJ., AllamA. and MollerL.1981. Deep seismic studies in Egypt and their interpretation. EOS, Transactions American Geophysical Union62, 1–230.
    [Google Scholar]
  86. MakrisJ., AllamA., MoktarT., BasahelA., DehghaniG.A. and BazariM.1983. Crustal structure at the northwestern region of the Arabian shield and its transition to the Red Sea. Journal of King Abdulaziz University, Earth Sciences6, 435–447.
    [Google Scholar]
  87. MakrisJ., HenkeC.H., EgloffF. and AkamalukT.1991. The gravity field of the Red Sea and East Africa. Tectonophysics198, 369–381.
    [Google Scholar]
  88. MakrisJ., StoefenB., VeesR., AllamA., MaamounM. and ShehataW.1979. Deep seismic sounding in Eqypt, Part I Unpublished technical report. Inst. für Geophys. Univ. Hamburg, Hamburg, 20 pp.
  89. MartinezF. and CochranJ.R.1988. Structure and tectonics of the northern Red Sea: catching a continental margin between rifting and drifting. Tectonophysics150, 1–32.
    [Google Scholar]
  90. MartinezF. and CochranJ.R.1989. Geothermal measurements in the northern Red Sea: implications for lithospheric thermal structure and mode of extension during continental rifting. Journal of Geophysical Research94, 239–266.
    [Google Scholar]
  91. MarzoukI.A.1988. Study of crustal structure of Egypt deduced from deep seismic and gravity data. PhD dissertation thesis, University of Hamburg, 118 pp.
  92. MckenzieD., DaviesD. and MolnarP.1970. Plate tectonic of the Red Sea and East Africa. Nature226, 243–248.
    [Google Scholar]
  93. McKinstryH.E.1953. Shears of the second order. American Journal of Science251, 401–414.
    [Google Scholar]
  94. MeshrefW.1990. Tectonic framework of Egypt. In: The Geology of Egypt (ed R.Said), pp. 1013–1026. BIkema, A.A. Rotterdame, Brookfield.
    [Google Scholar]
  95. MeshrefW.M. and El‐SheikhM.M.1973. Magnetic tectonic trend analysis in northern Egypt. The Egyptian Journal of Geology17, 179–184.
    [Google Scholar]
  96. MilkereitB. and FluhE.R.1985. Saudi Arabian refraction profile; crustal structure of the Red Sea–Arabian shield transition. Tectonophysics111, 283–298.
    [Google Scholar]
  97. MillerR.L. and KhanJ.S.1962. Statistical Analysis in the Geological Science. John Wiley and Sons, Inc. New York, 469 pp.
    [Google Scholar]
  98. MishraD.C. and NaiduP.S.1974. Two‐dimensional power spectral analysis of aeromagnetic fields. Geophysical Prospecting22, 345–353.
    [Google Scholar]
  99. MitchellN.C. and ParkY.2014. Nature of crust in the central Red Sea and topographic control of evaporite flowage. Tectonophysics628, 123–139.
    [Google Scholar]
  100. MontenatC., Ott d'estevouP., PurserB.H., BurolletP.F. and JarrigeL.J.1988. Tectonic and sedimentary evolution of the Gulf of Suez and the northwestern Red Sea. Tectonophysics153, 161–177.
    [Google Scholar]
  101. MooneyW.D., GettingsM.E., BlankH.R. and HealyJ.H.1985. Saudi Arabian seismic‐refraction profile; a traveltime interpretation of crustal and upper mantle structure. Tectonophysics111, 173–246.
    [Google Scholar]
  102. MorettiI. and Che´NetP.Y.1987. The evolution of the Suez rift: a combination of stretching and secondary convection. Tectonophysics133, 229–234.
    [Google Scholar]
  103. MorganP., BoulosF.K. and SwanbergC.A.1983. Regional geothermal exploration in Egypt. Geophysical Prospecting31, 361–376.
    [Google Scholar]
  104. MorganP. and SwanbergC.A.1979. Heat flow and the geothermal potential of Egypt. Pure and Applied Geophysics117, 213–225.
    [Google Scholar]
  105. MorganP., SwanbergC.A., BoulosF.K., HenninS.F., El‐SayedA.A. and BastaN.Z.1980. Geothermal studies in northeast Africa. Annals Geological Survey of Egypt10, 971–987.
    [Google Scholar]
  106. MoustafaA.R.1976. Block faulting in the Gulf of Suez. Fifth Exploration Seminar, Cairo, Egypt, Egyptian general petroleum organization‐ DEMINEX, 16 pp.
  107. MoustafaA.R.1997. Controls on the development and transfer zones: The influence of basement structures and sedimentary thickness in the Gulf of Suez and Red Sea. Journal of Structural Geology19, 755–768.
    [Google Scholar]
  108. NabighianM.N.1972. The analytic signal of two‐dimensional magnetic bodies with polygonal cross‐section: its properties and use for automated anomaly interpretation. Geophysics37, 507–517.
    [Google Scholar]
  109. NwosuO.B.2014. Determination of magnetic basement depth over parts of middle Benue Trough by Source Parameter Imaging (SPI) technique using HRAM. International Journal of Scientific and Technology Research3, 262–271.
    [Google Scholar]
  110. OkuboY., GrafR.J., HansentR.O., OgawaK. and TsuH.1985. Curie point depths of the island of Kyushu and surrounding areas Japan. Geophysics53, 481–494.
    [Google Scholar]
  111. OttN., GötzeH.J., SchmidtS., BurgerH. and AltenM.2002. Meta Geoinformation System facilitates use of complex data for study of Central Andes, EOS. Transactions American Geophysical Union83, 1–367.
    [Google Scholar]
  112. PautotG., GuennocB., CoutelleA. and LyberisN.1984. Discovery of a large brine deep in the northern Red Sea. Nature310, 133–136.
    [Google Scholar]
  113. ProdehlC.1985. Interpretation of a seismic‐refraction survey across the Arabian Shield in western Saudi Arabia. Tectonophysics111, 247–282.
    [Google Scholar]
  114. ProdehlC., FuchsK. and Mechie, J.1997. Seismic refraction studies of the Afro‐Arabian rift system‐ a brief review. Tectonophysics278, 1–13.
    [Google Scholar]
  115. PrutkinI. and SalehA.2009. Gravity and magnetic data inversion for 3D topography of the Moho discontinuity in the northern Red Sea area, Egypt. Journal of Geodynamics47, 237–245.
    [Google Scholar]
  116. QuennellA.M.1958. The structural and geomorphic evolution of the Dead Sea Rift. Quarterly Journal of the Geological Society, London114, 1–24.
    [Google Scholar]
  117. RiadS., FouadA., RefaiE. and GhalebM.1983. Preliminary interpretation of regional gravity anomalies of Egypt. Paper presented at the 8th General Assembly of the IUGG, Hamburg.
  118. RihmR., MakrisJ. and MollerL.1991. Seismic survey in the northern Red Sea: asymmetric crustal structure. Tectonophysics198, 279–295.
    [Google Scholar]
  119. RobertsA.2001. Curvature attributes and their application to 3D interpreted horizons, European Association of Geoscientists and Engineers. First Break19, 85–100.
    [Google Scholar]
  120. RobsonD.A.1971. The structure of Gulf of Suez Clysmic rift with special reference to the eastern side. Journal of the Geological Society, London127, 274–276.
    [Google Scholar]
  121. RoeserH.A.1975. A detailed magnetic survey of the southern Red Sea. Geologisches Jahrbuch13, 131–153.
    [Google Scholar]
  122. RossD.A. and SchleeJ.1973. Shallow structure and geologic development of the Red Sea. Geological Society of America Bulletin84, 3827–3848.
    [Google Scholar]
  123. RossH., BlakelyR. and ZobakM.2006. Testing the utilization of aeromagnetic data for the determination of Curie‐isotherm depth. Fall Meet. Suppl. Abstract T31A‐1287, 85. EOS Transactions American Geophysical Union.
  124. RozimantK., BuyuksaracA. and BektasO.2009. Interpretation of magnetic anomalies and estimation of depth of magnetic crust in Slovakia. Pure and Applied Geophysics166, 471–484.
    [Google Scholar]
  125. SaadM.H.1991. Geophysical study of Red Sea area, from Ras Mohamed to Ras Benas. PhD thesis, Cairo University, 1–5.
  126. SaadaS.A.2016. Geothermal reconnaissance of the area between Marsa Alam and Ras Banas, northern Red Sea, Egypt, using aeromagnetic data. Journal of African Earth Sciences118, 45–52.
    [Google Scholar]
  127. SaadaS.A. and AzabA.A.2016. Structural setup of Ras Banas area, Red Sea, Egypt, as inferred from aeromagnetic data. Arabian Journal of Geosciences9, 1–17.
    [Google Scholar]
  128. SaidR.1990. The Geology of Egypt, 1–734. Balkema, Rotterdam.
    [Google Scholar]
  129. SalahS. and PastekaR.2012. Applying the regularized derivatives approach in Euler deconvolution and modeling geophysical data to estimate the deep active structures for the northern Red Sea Rift region, Egypt. Contributions to Geophysics and Geodesy42, 25–61.
    [Google Scholar]
  130. SalehS., JahrT., JentzschG., SalehA. and Abou AshourN.M.2006. Crustal evaluation of the northern Red Sea rift and Gulf of Suez, Egypt from geophysical data: 3‐dimensional modelling. Journal of African Earth Sciences45, 257–278.
    [Google Scholar]
  131. SalehS., MujganS. and OyaP.2012. Estimating Curie point depth and heat flow map for Northern Red Sea Rift of Egypt and its surroundings, from aeromagnetic data. Pure and Applied Geophysics170, 863–885.
    [Google Scholar]
  132. SalehS. and SalehA.2012. Stress analysis and tectonic trends of southern Sinai Peninsula, using potential field data analysis and anisotropy technique. Central European Journal of Geosciences4, 448–464.
    [Google Scholar]
  133. SchmidtS. and GötzeH.J.2003. Preinterpretation of potential fields by the aid of curvature attributes. EGS‐AGU‐EUG Joint Assembly.
  134. ScholtenJ.C., StoffersP., WalterP. and PlügerW.1991. Evidence for episodic hydrothermal activity in the Red Sea from the composition and formation of hydrothermal sediments, Thetis Deep. Tectonophysics190, 109–117.
    [Google Scholar]
  135. SchwartzA.1974. Calculus and Analytic Geometry, 3rd ed, 1140. Holt, Rinehart, and Winston, New York.
    [Google Scholar]
  136. SegevA., AvniY., ShaharJ. and WaldR.2017. Late Oligocene and Miocene different seaways to the Red Sea–Gulf of Suez rift and the Gulf of Aqaba–Dead Sea basins. Earth Science Reviews171, 196–219.
    [Google Scholar]
  137. ShueyR.T., SchellingerD.K., TrippA.C. and AlleyL.B.1977. Curie depth determination from aeromagnetic spectra. Geophysical Journal of the Royal Astronomical Society50, 75–101.
    [Google Scholar]
  138. SmithR.B., ShueyR.T., FreidlineR.O., OtisR.M. and AlleyL.B.1974. Yellowstone hot spot: new magnetic and seismic evidence. Geology2, 451–455.
    [Google Scholar]
  139. SmithR.S., ThurstonJ.B., DaiT. and MacLeodI.N.1998. The improved source parameter imaging method. Geophysical Prospecting46, 141–151.
    [Google Scholar]
  140. SpectorA. and GrantF.S.1970. Statistical models for interpreting aeromagnetic data. Geophysics35, 293–302.
    [Google Scholar]
  141. StecchiF., AntonelliniM. and GabbianelliG.2009. Curvature analysis as a tool for subsidence‐related risk zones identification in the city of Tuzla (BiH). Geomorphology107, 316–325.
    [Google Scholar]
  142. SultanM., ArvidsonR.E. and DuncanI.J.1988. Extension of the Najd shear system from Saudi Arabia to the central eastern desert of Egypt based on integrated field and Landsat observations. Tectonics7, 1291–1306.
    [Google Scholar]
  143. SwartzD.H. and ArdenD.D.1960. Geologic history of the Red Sea area. Bulletin – American Association of Petroleum Geologists44, 1621–1637.
    [Google Scholar]
  144. TalwaniM. and HeirtzlerJ.R.1964. Computation of magnetic anomalies caused by two‐dimensional structures of arbitrary shape, in computers in the mineral industries. Part 1. Stanford University Publications Geological Sciences9, 464–480.
    [Google Scholar]
  145. TalwaniM., WorzelJ.L. and LandismanM.1959. Rapid gravity computations for two‐dimensional bodies with application to Mendocino submarine fracture zone. Journal of Geophysical Research64, 49–59.
    [Google Scholar]
  146. TanakaA., OkuboY. and MatsubayashiO.1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics306, 461–470.
    [Google Scholar]
  147. TazieffH.1952. Une recente campagne oceanographique dans la mer Rouge. Bulletin de la Société géologique61, 84–90.
    [Google Scholar]
  148. TewfikN. and AyyadM.1982. Petroleum exploration in the Red Sea shelf of Egypt. Proc. 6th Exploration Seminar Egyptian General Petroleum Corporation and Egypt Petroleum Exploration Society, Cairo, 1 March, 159–180.
  149. ThurstonJ.B. and SmithR.S.1997. Automatic conversion of magnetic data to depth, dip, susceptibility contrast using the SPITM method. Geophysics62, 807–813.
    [Google Scholar]
  150. TramontiniC. and DaviesD.1969. A seismic refraction survey in the Red Sea. Geophysical Journal International17, 2225–2241.
    [Google Scholar]
  151. VineF.J.1966. Spreading of the ocean floor‐new evidence. Science154, 1405–1415.
    [Google Scholar]
  152. VineF.J. and MatthewsD.H.1963. Magnetic anomalies over oceanic ridges. Nature199, 947–949.
    [Google Scholar]
  153. VoggenreiterW., HötzlH. and JadoA.R.1988. Red Sea related history of extension and magmatism in the Jizan area (southwest Saudi Arabia): indication for simple‐shear during Red Sea rifting. Geologische Rundschau77, 257–274.
    [Google Scholar]
  154. WhitmarshR.B., WeserO.E. and RossD.A.1974. Initial Reports of the Deep Sea, pp. 1–1180. Drilling Proj, 23 B. U.S. Government Printing Office, Washington, DC.
    [Google Scholar]
  155. WincklerG., KipferR., Aeschbach‐HertigW., BotzR., SchmidtM., SchulerS.et al. 2000. Sub sea floor boiling of Red Sea Brines‐ new indication from noble gas data. Geochimica et Cosmochimica Acta64, 1567–1575.
    [Google Scholar]
  156. YoussefM.I.1968. Structural pattern of Egypt and its interrelation. American Association of Petroleum Geologists Bulletin52, 601–614.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12939
Loading
/content/journals/10.1111/1365-2478.12939
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Gravity; Interpretation; Magnetic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error