1887
Volume 68, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Seismoelectric coupling in an electric isotropic and elastic anisotropic medium is developed using a primary–secondary formulation. The anisotropy is of vertical transverse isotropic type and concerns only the poroelastic parameters. Based on our finite difference time domain algorithm, we solve the seismoelectric response to an explosive source. The seismic wavefields are computed as the primary field. The electric field is then obtained as a secondary field by solving the Poisson equation for the electric potential. To test our numerical algorithm, we compared our seismoelectric numerical results with analytical results obtained from Pride's equation. The comparison shows that the numerical solution gives a good approximation to the analytical solution. We then simulate the seismoelectric wavefields in different models. Simulated results show that four types of seismic waves are generated in anisotropic poroelastic medium. These are the fast and slow longitudinal waves and two separable transverse waves. All of these seismic waves generate coseismic electric fields in a homogenous anisotropic poroelastic medium. The tortuosity has an effect on the propagation of the slow longitudinal wave. The snapshot of the slow longitudinal wave has an oval shape when the tortuosity is anisotropic, whereas it has a circular shape when the tortuosity is isotropic. In terms of the Thomsen parameters, the radiation anisotropy of the fast longitudinal wave is more sensitive to the value of ε, while the radiation anisotropy of the transverse wave is more sensitive to the value of δ.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12958
2020-05-29
2020-08-11
Loading full text...

Full text loading...

References

  1. Ben‐Menahem, A., Gibson, R., Jr. and Sena, A. (1991) Green's tensor and radiation patterns of point sources in general anisotropic inhomogeneous elastic media. Geophysical Journal International, 107, 297–308.
    [Google Scholar]
  2. Ben‐Menahem, A. and Sena, A. (1990) Seismic source theory in stratified anisotropic media. Journal of Geophysical Research, 95, 15395–15427.
    [Google Scholar]
  3. Bordes, C., Jouniaux, L., Dietrich, M., Pozzi, J. and Garambois, S. (2006) First laboratory measurements of seismo‐magnetic conversions in fluid filled Fontainebleau sand. Geophysical Research Letters, 33. https://doi.org/10.1029/2005GL024582.
    [Google Scholar]
  4. Biot, M.A. (1955) Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26, 182–185.
    [Google Scholar]
  5. Biot, M.A. (1956a) Theory of propagation of elastic waves in a fluid saturated porous medium. I. Low‐frequency range. Journal of Acoustic Society of America, 28, 168–178.
    [Google Scholar]
  6. Biot, M.A. (1956b) Theory of propagation of elastic waves in a fluid saturated porous medium. II. Higher‐frequency range. Journal of Acoustical Society of America, 28, 179–191.
    [Google Scholar]
  7. Biot, M.A. (1962) Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33, 1482–1498.
    [Google Scholar]
  8. Cai, L., Qi, G., Tian, L., Jie, Y., Huan, F., Qi, L., Yang, L., Dian, W. and You, T. (2013) Numerical Simulation of Seismic Wave Field in Complex Medium. Beijing: Sciences Press, pp. 73–78.
    [Google Scholar]
  9. Carcione, J. (1995) Wave propagation in anisotropic, saturated porous media: plane‐wave theory and numerical simulation. Journal of Acoustical Society of America, 99, 2655–2667.
    [Google Scholar]
  10. Gao, Y. and Hu, H. (2009) Numerical simulation and analysis of seismoelectromagnetic wave fields exited by a point source in layered porous media. Chinese Journal of Geochemistry, 52, 2093–2104.
    [Google Scholar]
  11. Gao, Y. and Hu, H. (2010) Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium. Geophysical Journal International, 181, 873–896.
    [Google Scholar]
  12. Gao, Y., Huang, F. and Hu, H. (2017a) Comparison of full and quasi‐static seismoelectric analytically based modelling. Journal of Geophysical Research, 122, 8066–8106.
    [Google Scholar]
  13. Gao, Y., Huang, F. and Hu, H. (2017b) Seismoelectric responses to an explosive source in a fluid above a fluid saturated porous medium. Journal of Geophysical Research, 122, 7190–7218.
    [Google Scholar]
  14. Gao, Y., Wang, D., Yao, C., Guan, W., Hu, H., Wen, J., Zhang, W., Tong, P. and Yang, Q. (2018) Simulation of seismoelectric waves using finite‐difference frequency‐domain method: 2‐D SHTE mode. Geophysical Journal International, 216, 414–438.
    [Google Scholar]
  15. Garambois, S. and Dietrich, M. (2001) Seismoelectric wave conversions in porous media: field measurements and transfer function analysis. Geophysics, 66(5), 1417–1410.
    [Google Scholar]
  16. Garambois, S. and Dietrich, M. (2002) Full waveform numerical simulation of seismoelectromagnetic wave conversions in fluid‐saturated porous media. Journal of Geophysical Research: Solid Earth, 107, ESE 5‐1 to ESE 5‐18.
    [Google Scholar]
  17. Gilbert, R. and Shoushani, M. (2017) The Biot model for anisotropic poro‐elastic media: the viscoelastic fluid case. Journal of Computational Acoustics, 25. https://doi.org/10.1142/S0218396X17500126.
    [Google Scholar]
  18. Guo, P. (2012) Dependency of tortuosity and permeability of porous media on directional distribution of pore voids. Transport in Porous Media, 95: 285–303.
    [Google Scholar]
  19. Haartsen, M. and Pride, S. (1997) Electroseismic waves from point sources in layered media. Journal of Geophysical Research, 102, 24745–24769.
    [Google Scholar]
  20. Haines, S. and Pride, S. (2006) Seismoelectric numerical modelling on a grid. Geophysics, 71(6) N57–N65.
    [Google Scholar]
  21. Ivanov, A. (1939) Effect of electrization of earth layers by elastic waves passing through them. Doklady Akademii Nauk SSSR, 24, 42–25.
    [Google Scholar]
  22. Jardani, A. and Revil, A. (2015) Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases. Geophysical Journal International, 202, 850–870.
    [Google Scholar]
  23. Martner, S. and Sparks, N. (1959) The electroseismic effect. Geophysics, 24(2), 297–308.
    [Google Scholar]
  24. Mikhailov, O.V., Haartsen, M.W. and Toksoz, M.N. (1997) Electrosesimic investigation of the shallow subsurface: field measurements and numerical modelling. Geophysics, 62(1), 97–105.
    [Google Scholar]
  25. Petropoulos, P., Li, Z. and Cangellaris, C. (1998) A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell's equations with high‐order staggered finite difference schemes. Journal of Computational Physics, 139, 184–208.
    [Google Scholar]
  26. Pooladi, A., Rahimian, M. and Pak, R. (2017) Poroelastodynamic potential method for transversely isotropic fluid – saturated poroelastic media. Applied Mathematical Modelling, 50, 177–199.
    [Google Scholar]
  27. Pride, S. (1994) Governing equations for the coupled electromagnetic sand acoustics of porous media. Physical Review B, 50, 15678–15696.
    [Google Scholar]
  28. Pride, S. and Haartsen, M. (1996) Electroseismic wave properties. Journal of the Acoustical Society of America, 100, 1301–1315.
    [Google Scholar]
  29. Ren, H., Chen, X. and Huang, Q. (2011) Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophysical Journal International, 188, 925–944.
    [Google Scholar]
  30. Ren, H., Huang, Q. and Chen, X. (2016) Numerical simulation of seismoelectromagnetic fields associated with a fault in a porous medium. Geophysical Journal International, 206, 205–220.
    [Google Scholar]
  31. Revil, A. and Linde, N. (2006) Chemico‐electromagnetical coupling in microporous media. Journal of Colloid and Interface Science, 302, 682–694.
    [Google Scholar]
  32. Revil, A. and Mahardika, H. (2013) Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials. Water Resources Research, 49, 744–766
    [Google Scholar]
  33. Schakel, M.D., Smeulders, D.M.J., Slob, E.C. and Heller, H.K.J. (2011a) Laboratory measurements and theoretical modelling of seismoelectric interface response and coseismic wave fields. Journal of Applied Physics, 109. https://doi.org/10.1063/1.3567945.
    [Google Scholar]
  34. Schakel, M.D., Smeulders, D.M.J., Slob, E.C. and Heller, H.K.J. (2011b) Seismoelectric interface response: experimental results and forward model. Geophysics, 76(4), N29–N36.
    [Google Scholar]
  35. Schakel, M.D., Smeulders, D.M.J., Slob, E.C. and Heller, H.K.J. (2012) Seismoelectric fluid/porous medium interface response model and measurements. Transport in Porous Media, 93, 271–282.
    [Google Scholar]
  36. Schoemaker, F.C., Grobbe, N., Schakel, M.D. and Ridder, S.A.L. (2012) Experimental validation of electrokinetic theory and development of seismoelectric interferometry by cross‐correlation. International Journal of Geophysics. https://doi.org/10.1155/2012/514242.
    [Google Scholar]
  37. Sharma, M. (2007) Wave propagation in a general anisotropic poroelastic medium: Biot's theory and homogenization theory. Journal of Earth System Science, 116, 357–367.
    [Google Scholar]
  38. Slob, E. and Mulder, M. (2016) Seismoelectric homogeneous space Green's function. Geophysics, 81(4), F27–F40.
    [Google Scholar]
  39. Thompson, A.H., Hornbostel, S., Burns, J., Murray, T., Raschke, R., Wride, J., McCammon, P., Sumner, J., Haake, G., Bixby, M., Ross, W., White, B.S., Zhou, M. and Peczak, P. (2007) Field test of electroseismic hydrocarbon detection. Geophysics, 72(1), N1–N9.
    [Google Scholar]
  40. Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.
    [Google Scholar]
  41. Tsvankin, L. (1996) P‐wave signatures and notation for transversely isotropic media: an overview. Geophysics, 61(2), 467–483.
    [Google Scholar]
  42. Tsvankin, L. (1997) Anisotropic parameters and P‐wave velocity for orthorhombic media. Geophysics, 62(4), 1292–1309.
    [Google Scholar]
  43. Virieux, J. (1984) Sh‐wave propagation in heterogeneous media‐velocity‐stress finite‐difference method. Geophysics, 49(11), 1933–1942.
    [Google Scholar]
  44. Wang, Y., Mu, P., Duan, Y. and Wang, T. (2018) Numerical simulation of elastic wave equation and analysis of wave field characteristics in 2‐D VTI medium. Open Journal of Yangtze Gas and Oil, 3, 153–166.
    [Google Scholar]
  45. White, B.S. and Zhou, M. (2006) Electroseismic prospecting in layered media. Society for Industrial and Applied Mathematics, 67, 69–98.
    [Google Scholar]
  46. Yang, D.H. and Zhang, Z.J. (2002) Poroelastic wave equation including the Biot/Squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35, 223–245.
    [Google Scholar]
  47. Yee, K. (1966) Numerical simulation of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14, 302–307.
    [Google Scholar]
  48. Zhu, Z., Haartsen, M. and Toksӧz, M.N. (1999) Experimental studies of electrokinetic conversions in fluid saturated borehole models. Geophysics, 64(5), 1349–1356.
    [Google Scholar]
  49. Zhu, Z. and Toksӧz, M.N. (2013) Experimental measurements of the streaming potential and seismoelectric conversion in Berea sandstone. Geophysical Prospecting, 61, 688–700
    [Google Scholar]
  50. Zhu, Z. and Toksӧz, M.N. (2015) Seismoelectric measurements in a porous quartz‐sand sample with anisotropic permeability. Geophysical Prospecting, 64, 700–713.
    [Google Scholar]
  51. Zhu, Z., Toksӧz, M.N. and Burns, D. (2008) Electroseismic and seismoelectric measurements of rock samples in a water tank. Geophysics, 73(5), E153–E164.
    [Google Scholar]
  52. Zyserman, F., Gauzellino, P. and Santos, J. (2010) Finite element modelling of SHTE and PSVTM electroseismics. Journal of Applied Geophysics, 72, 79–91.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12958
Loading
/content/journals/10.1111/1365-2478.12958
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error