1887
Volume 68, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Seismic attenuation compensation is a spectrum‐broadening technique for enhancing the resolution of non‐stationary seismic data. The single‐trace attenuation compensation algorithms ignore the prior information that the seismic reflection events are generally continuous along seismic traces, thus, the compensated result may have poor spatial continuity and low signal‐to‐noise ratio. To address this problem, we extend the single‐trace approaches to the multi‐trace algorithms and furthermore propose a multi‐trace attenuation compensation with a spatial constraint. The frequency‐space prediction filters are the key to construct this spatial regularization. We test the effectiveness of the proposed spatially constrained attenuation compensation algorithm by applying both synthetic and field data examples. Synthetic data tests indicate that the proposed multi‐trace attenuation compensation approach can provide a better compensated result than single‐trace attenuation compensation algorithm in terms of suppressing noise amplification and guaranteeing structural continuities. Field data applications further confirm its stability and practicality to improve seismic resolution.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12959
2020-05-15
2024-04-26
Loading full text...

Full text loading...

References

  1. Aghamiry, H.S. and Gholami, A. (2018) Interval‐Q estimation and compensation: an adaptive dictionary‐learning approach. Geophysics, 83(4), V233–V242.
    [Google Scholar]
  2. Baan, M.V.D. (2012) Bandwidth enhancement: inverse Q filtering or time‐varying wiener deconvolution?Geophysics, 77(4), V133–V142.
    [Google Scholar]
  3. Boyd, S., Parikh, N., Eric, C., Peleato, B. and Eckstein, J. (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1–122.
    [Google Scholar]
  4. Braga, I.L.S. and Moraes, F.S. (2013) High‐resolution gathers by inverse filtering in the wavelet domain. Geophysics, 78(2), V53–V61.
    [Google Scholar]
  5. Burg, J.P. (1964) Three‐dimensional filtering with an array of seismometers. Geophysics, 29(5), 693–713.
    [Google Scholar]
  6. Canales, L.L. (1984) Random noise reduction. 54th SEG Annual International meeting, Expanded Abstracts, 525–527.
  7. Chai, X., Wang, S., Yuan, S., Zhao, J., Sun, L. and Wei, X. (2014) Sparse reflectivity inversion for nonstationary seismic data. Geophysics, 79(3), V93–V105.
    [Google Scholar]
  8. Chase, M.K. (1992) Random noise reduction by FXY prediction filtering. Exploration Geophysics, 23, 51–56.
    [Google Scholar]
  9. Dai, R., Zhang, F. and Liu, H. (2016) Seismic inversion based on proximal objective function optimization algorithm. Geophysics, 81(5), R237–R246.
    [Google Scholar]
  10. Du, X., Li, G., Zhang, M., Li, H., Yang, W. and Wang, W. (2018) Multichannel band‐controlled deconvolution based on a data‐driven structural regularization. Geophysics, 83(5), R401–R411.
    [Google Scholar]
  11. Futterman, W.I. (1962) Dispersive body waves. Journal of Geophysical Research, 67(13), 5279–5291.
    [Google Scholar]
  12. Gholami, A. (2015) Nonlinear multichannel impedance inversion by total‐variation regularization. Geophysics, 80(5), R217–R224.
    [Google Scholar]
  13. Gulunay, N. (1986) FXDECON and complex wiener prediction filter. 56th SEG Annual International meeting, Expanded Abstracts, 279–281.
  14. Gulunay, N. (2000) Noncausal spatial prediction filtering for random noise reduction on 3‐D poststack data. Geophysics, 65(5), 1641–1653.
    [Google Scholar]
  15. Hamid, H. and Pidlisecky, A. (2015) Multitrace impedance inversion with lateral constraints. Geophysics, 80(6), M101–M111.
    [Google Scholar]
  16. Hansen, P.C. and O'Leary, D.P. (1993) The use of the L‐curve in the regularization of discrete ill‐posed problems. SIAM Journal on Scientific Computing, 14(6), 1487–1503.
    [Google Scholar]
  17. Hargreaves, N.D. and Calvert, A.J. (1991) Inverse Q filtering by Fourier transform. Geophysics, 56(4), 519–527.
    [Google Scholar]
  18. Harris, P.E. and White, R.E. (1997) Improving the performance of f‐x prediction filtering at low signal‐to‐noise ratios. Geophysical Prospecting, 45(2), 269–302.
    [Google Scholar]
  19. Hornbostel, S. (1991) Spatial prediction filtering in the t‐x and f‐x domains. Geophysics, 56(12), 2019–2026.
    [Google Scholar]
  20. Kjartansson, E. (1979) Constant Q wave propagation and attenuation. Journal of Geophysical Research Solid Earth, 84(B9), 4737–4748.
    [Google Scholar]
  21. Li, G., Liu, Y., Zheng, H. and Huang, W. (2015) Absorption decomposition and compensation via a two‐step scheme. Geophysics, 80(6), V145–V155.
    [Google Scholar]
  22. Li, Q., Fu, L.‐Y., Wei, W., Sun, W., Du, Q. and Feng, Y. (2019a). Stable and high‐efficiency attenuation compensation in reverse‐time migration using wavefield decomposition algorithm. IEEE Geoscience and Remote Sensing Letters, 16(10), 1615–1619.
    [Google Scholar]
  23. Li, Q., Fu, L.‐Y., Zhou, H., Wei, W. and Hou, W. (2019b). Effective Q‐compensated reverse time migration using new decoupled fractional laplacian viscoacoustic wave equation. Geophysics, 84(2), S57–S69.
    [Google Scholar]
  24. Lines, L.R. and Ulrych, T.J. (1977) The old and the new in seismic deconvolution and wavelet estimation. Geophysical Prospecting, 25(3), 512–540.
    [Google Scholar]
  25. Liu, G. and Chen, X. (2013) Noncausal f‐x‐y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data. Journal of Applied Geophysics, 93, 60–66.
    [Google Scholar]
  26. Liu, G. and Chen, X. (2018) Seismic data interpolation using frequency‐domain complex nonstationary autoregression. Geophysical Prospecting, 66(3), 478–497.
    [Google Scholar]
  27. Liu, G., Chen, X., Du, J. and Wu, K. (2012) Random noise attenuation using f‐x regularized nonstationary autoregression. Geophysics, 77(2), V61–V69.
    [Google Scholar]
  28. Lupinacci, W.M., de Franco, A.P., Oliveira, S.A.M. and de Moraes, F.S. (2017) A combined time‐frequency filtering strategy for Q‐factor compensation of poststack seismic data. Geophysics, 82(1), V1–V6.
    [Google Scholar]
  29. Ma, X., Li, G., Li, H. and Yang, W. (2020) Multichannel absorption compensation with a data‐driven structural regularization. Geophysics, 82(4), V191–V199.
    [Google Scholar]
  30. Ma, X., Li, G., Wang, S., Yang, W. and Wang, W. (2017) A new method for Q estimation from reflection seismic data. 87th SEG Annual International meeting, Expanded Abstracts, 5496–5500.
  31. Morozov, I., Haiba, M. and Deng, W. (2018) Inverse attenuation‐filtering. Geophysics, 83(2), V135–V147.
    [Google Scholar]
  32. Naghizadeh, M. and Sacchi, M.D. (2009) f‐x adaptive seismic‐trace interpolation. Geophysics, 74(1), V9–V16.
    [Google Scholar]
  33. Oliveira, S.A.M. and Lupinacci, W.M. (2013) L1 norm inversion method for deconvolution in attenuating media. Geophysical Prospecting, 61(4), 771–777.
    [Google Scholar]
  34. Robinson, J.C. (1979) A technique for the continuous repreientation of dispersion in seismic data. Geophysics, 44(8), 1345–1351.
    [Google Scholar]
  35. Sacchi, M.D. and Naghizadeh, M. (2009) Adaptive linear prediction filtering for random noise attenuation. 79th SEG Annual International meeting, Expanded Abstracts, 3347–3351.
  36. Soubaras, R. (1994) Signal‐preserving random noise attenuation by the F‐X projection. 64th SEG Annual International meeting, Expanded Abstracts, 1576–1579.
  37. Spitz, S. (1991) Seismic trace interpolation in the F‐X domain. Geophysics, 56(6), 785–794.
    [Google Scholar]
  38. Sui, Y. and Ma, J. (2019) A nonstationary sparse spike deconvolution with anelastic attenuation. Geophysics, 84(2), R221–R234.
    [Google Scholar]
  39. Wang, R. and Wang, Y. (2017) Multichannel algorithms for seismic reflectivity inversion. Journal of Geophysics and Engineering, 14(1), 41–50.
    [Google Scholar]
  40. Wang, S. and Chen, X. (2014) Absorption‐compensation method by l1‐norm regularization. Geophysics, 79(3), V107–V114.
    [Google Scholar]
  41. Wang, Y. (2002a). Seismic trace interpolation in the f‐x‐y domain. Geophysics, 67(4), 1232–1239.
    [Google Scholar]
  42. Wang, Y. (2002b). A stable and efficient approach of inverse Q filtering. Geophysics, 67(2), 657–663.
    [Google Scholar]
  43. Wang, Y. (2006) Inverse Q‐filter for seismic resolution enhancement. Geophysics, 71(3), V51–V60.
    [Google Scholar]
  44. Wang, Y. and Guo, J. (2004) Seismic migration with inverse Q filtering. Geophysical Research Letters, 31(21), 608–611.
    [Google Scholar]
  45. Wang, Y., Ma, X., Zhou, H. and Chen, Y. (2018) L1−2 minimization for exact and stable seismic attenuation compensation. Geophysical Journal International, 213(3), 1629–1646.
    [Google Scholar]
  46. Xue, Y., Cao, J. and Wang, X. (2019) Inverse Q filtering via synchrosqueezed wavelet transform. Geophysics, 84(2), V121–V132.
    [Google Scholar]
  47. Yuan, S., Wang, S., Tian, N. and Wang, Z. (2016) Stable inversion‐based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics, 81(3), V199–V212.
    [Google Scholar]
  48. Zhang, C. and Ulrych, T.J. (2007) Seismic absorption compensation: a least squares inverse scheme. Geophysics, 72(6), R109–R114.
    [Google Scholar]
  49. Zhang, R., Sen, M.K. and Srinivasan, S. (2013) Multi‐trace basis pursuit inversion with spatial regularization. Journal of Geophysics and Engineering, 10(3), 035012.
    [Google Scholar]
  50. Zhou, D., Yin, X. and Zong, Z. (2019) Multi‐trace basis‐pursuit seismic inversion for resolution enhancement. Geophysical Prospecting, 67(3), 519–531.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12959
Loading
/content/journals/10.1111/1365-2478.12959
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Attenuation; Data processing; Inverse problem; Signal processing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error