1887
Volume 69 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The propagation of seismic waves through a saturated reservoir compresses the fluid in the pore spaces. During this transition, parts of seismic energy would be attenuated because of intrinsic absorption. Rock physics models make the bridge between the seismic properties and petrophysical reality in the earth. Attenuation is one of the significant seismic attributes used to describe the fluid behaviour in the reservoirs. We examined the core samples using ultrasonic experiments at the reservoir conditions. Given the rock properties of the carbonate reservoir and experiment results, the patchy saturation mechanism was solved for substituted fluid using the theory of modulus frequency. The extracted relationship between the seismic attenuation and water saturation was used in time–frequency analysis. We performed the peak frequency method to estimate the factor in the Gabor domain and determined the water saturation based on the computed rock physics model. The results showed how the probable fault in the reservoir has stopped the fluid movement in the reservoir and caused touching the water‐bearing zone through drilling.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13050
2020-12-12
2024-04-26
Loading full text...

Full text loading...

References

  1. Adam, L. and Otheim, T. (2013) Elastic laboratory measurements and modeling of saturated basalts. Journal of Geophysical Research, 118, 840–851. https://doi.org/10.1002/jgrb.50090
    [Google Scholar]
  2. Ba, J., Carcione, J.M., Cao, H., Du, Q., Yuan, Z. and Lu, M. (2012) Velocity dispersion and attenuation of P waves in partially‐saturated rocks: wave propagation equations in double‐porosity medium. Chinese Journal of Geophysics, 55, 219–231 (in Chinese).
    [Google Scholar]
  3. Ba, J., Carcione, J.M. and Nie, J. (2011) Biot–Rayleigh theory of wave propagation in double‐porosity media. Journal of Geophysical Research, 116, B06202. https://doi.org/10.1029/2010JB008185
    [Google Scholar]
  4. Ba, J., Du, Q., Carcione, J.M., Zhang, H. and Müller, T.M. (2015) Seismic Exploration of Hydrocarbons in Heterogeneous Reservoirs: New Theories, Methods and Applications. Amsterdam: Elsevier Science. https://doi.org/10.1016/C2013-0-09972-0.
    [Google Scholar]
  5. Ba, J., Xu, W., Fu, L.Y., Carcione, J.M. and Zhang, L. (2017) Rock anelasticity due to patchy saturation and fabric heterogeneity: a double double‐porosity model of wave propagation. Journal of Geophysical Research, 122,1949–1976. https://doi.org/10.1002/2016JB013882
    [Google Scholar]
  6. Ba, J., Zhang, L., Sun, W. and Hao, Z. (2014) Velocity field of wave‐induced local fluid flow in double‐porosity media. Science China Physics. Mechanics & Astronomy, 57, 1020–1030. https://doi.org/10.1007/s11433-014-5442-0
    [Google Scholar]
  7. Ba, J., Zhang, L., Wang, D., Yuan, Z., Cheng, W., Ma, R. and Wu, C. (2018) Experimental analysis on P‐wave attenuation in carbonate rocks and reservoir identification. Journal of Seismic Exploration, 27(4), 371–402.
    [Google Scholar]
  8. Ba, J., Zhao, J., Carcione, J.M. and Huang, X. (2016) Compressional wave dispersion due to rock matrix stiffening by clay squirt flow. Journal of Geophysical Research, 43, 6186–6195. https://doi.org/10.1002/2016GL069312
    [Google Scholar]
  9. Batzle, M.L., Han, D.H. and Hofmann, R. (2006) Fluid mobility and frequency‐dependent seismic velocity‐direct measurements. Geophysics, 71(1), N1–N9. https://doi.org/10.1190/1.2159053
    [Google Scholar]
  10. Batzle, M.L. and Wang, Z. (1992) Seismic properties of pore fluids. Geophysics, 57, 1396–1408. https://doi.org/10.1190/1.1443207
    [Google Scholar]
  11. Beckwith, J., Clark, R. and Hodgson, L. (2016) The estimation of spectra from time‐frequency transforms for use in attenuation studies. Geophysical Prospecting, 65(1), 204–220. https://doi.org/10.1111/1365-2478.12407
    [Google Scholar]
  12. Best, A.I., Priest, J.A., Clayton, C.R.I. and Rees, E.V.L. (2013) The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub‐seafloor conditions. Earth and Planetary Science Letters, 368, 78–87. https://doi.org/10.1016/j.epsl.2013.02.033
    [Google Scholar]
  13. Biot, M.A. (1941) General theory of three‐dimensional consolidation. Journal of Applied Physics, 12, 155–164. https://doi.org/10.1063/1.1712886
    [Google Scholar]
  14. Biot, M.A. (1962) Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33, 1482–1498. https://doi.org/10.1063/1.1728759
    [Google Scholar]
  15. Cao, Z.N., Li, X.Y., Liu, J., Qin, X., Sun, S., Li, Z. and Cao, Z. (2018) Carbonate fractured gas reservoir prediction based on P‐wave azimuthal anisotropy and dispersion. Journal of Geophysics and Engineering, 15(5), 2139–2149. https://doi.org/10.1088/1742-2140/aabe58
    [Google Scholar]
  16. Caputo, M. and Mainardi, F. (1971) A new dissipation model based on memory mechanism. Pure and Applied Geophysics, 91, 134–147. https://doi.org/10.1007/BF00879562
    [Google Scholar]
  17. Carcione, J.M., Cavallini, F., Mainardi, F. and Hanyga, A. (2002) Time‐domain modeling of constant‐Q seismic waves using fractional derivatives. Pure and Applied Geophysics, 159, 1719–1736. https://doi.org/10.1007/s00024-002-8705-z
    [Google Scholar]
  18. Carcione, J.M. and Gurevich, B. (2011) Differential form and numerical implementation of Biot's poroelasticity equations with squirt dissipation. Geophysics, 76(6), N55–N64. https://doi.org/10.1190/geo2010-0169.1
    [Google Scholar]
  19. Castagna, J.P., Sun, S. and Siegfried, R.W. (2003) Instantaneous spectral analysis: detection of low‐frequency shadows associated with hydrocarbons. Leading Edge, 22, 120–127. https://doi.org/10.1190/1.1559038
    [Google Scholar]
  20. Casula, G. and Carcione, J.M., (1992) Generalized mechanical model analogies of linear viscoelastic behavior. Bollettino Di GeoFisica Teorica Ed Applicata, 34, 235–256.
    [Google Scholar]
  21. Chapman, M. (2003) Frequency‐dependent anisotropy due to meso‐scale fractures in the presence of equant porosity. Geophysical Prospecting, 51, 369–379. https://doi.org/10.1046/j.1365-2478.2003.00384.x
    [Google Scholar]
  22. Chapman, M., Liu, E. and Li, X.Y. (2006) The influence of fluid‐sensitive dispersion and attenuation on AVO analysis. Geophysical Journal International, 167, 89–105. https://doi.org/10.1111/j.1365-246X.2006.02919.x
    [Google Scholar]
  23. Chapman, M., Zatsepin, S.V. and Crampin, S. (2002) Derivation of a microstructural poroelastic model. Geophysical Journal International, 151, 427–451. https://doi.org/10.1046/j.1365-246X.2002.01769.x
    [Google Scholar]
  24. Ding, P.B., Di, B.R., Wang, D., Wei, J.X. and Zeng, L.B. (2018) P‐ and S‐wave velocity and anisotropy in saturated rocks with aligned cracks. Wave Motion, 81, 1–14. https://doi.org/10.1016/j.wavemoti.2018.05.001
    [Google Scholar]
  25. Dvorkin, J., Nolen‐Hoeksema, R. and Nur, A. (1994) The squirt‐flow mechanism: macroscopic description. Geophysics, 59, 428–438. https://doi.org/10.1190/1.1443605
    [Google Scholar]
  26. Galvin, R.J. and Gurevich, B. (2006) Interaction of an elastic wave with a circular crack in a fluid saturated porous medium. Applied Physics Letters, 88, 061918. https://doi.org/10.1063/1.2165178
    [Google Scholar]
  27. Galvin, R.J. and Gurevich, B. (2007) Scattering of a longitudinal wave by a circular crack in a fluid saturated porous medium. International Journal of Solids and Structures, 44, 7389–7398. https://doi.org/10.1016/j.ijsolstr.2007.04.011
    [Google Scholar]
  28. Gao, J. and Yu, Q. (2018) Effect of water saturation on pressure‐dependent permeability of carboniferous shale of the Qaidam Basin. China. Transport Porous Media, 123, 147–172. https://doi.org/10.1007/s11242-018-1029-y
    [Google Scholar]
  29. Gassmann, F. (1951) Elastic waves through a packing of spheres. Geophysics, 16, 673–685. http://doi.org/10.1190/1.1437718
    [Google Scholar]
  30. Guo, Y.Q., Ma, H.D., Ba, J., Hao, Y. and Long, C. (2015) Impact of data distribution on fluid sensitivity analysis: a quantitative investigation. Journal of Applied Geophysics, 119, 1–15. https://doi.org/10.1016/j.jappgeo.2015.05.003
    [Google Scholar]
  31. Gurevich, B. (2003) Elastic properties of saturated porous rocks with aligned fractures. Journal of Applied Geophysics, 54, 203–218. https://doi.org/10.1016/j.jappgeo.2002.11.002
    [Google Scholar]
  32. Gurevich, B., Brajanovski, M., Galvin, R.J., Müller, T.M. and Toms‐Stewart, J. (2009) P‐wave dispersion and attenuation in fractured and porous reservoirs – poroelasticity approach. Geophysical Prospecting, 57, 225–237. https://doi.org/10.1111/j.1365-2478.2009.00785.x
    [Google Scholar]
  33. Hu, C., Tu, N. and Lu, W. (2013) Seismic attenuation estimation using an improved frequency‐shift method. IEEE Geoscience & Remote Sensing Letters, 10(5), 1026–1030. https://doi.org/10.1109/LGRS.2012.2227933.
    [Google Scholar]
  34. Jamali, J. and Javaherian, A. (2020) Nonstationary deconvolution using maximum kurtosis optimization. Geophysical Prospecting, 68, 1443–1455. https://doi.org/10.1111/1365-2478.12913.
    [Google Scholar]
  35. Johnson, D.L. (2001) Theory of frequency dependent acoustics of patchy‐saturated porous media. The Journal of the Acoustical Society of America, 110, 682–694. https://doi.org/10.1121/1.1381021
    [Google Scholar]
  36. King, M.S. and Marsden, J.R. (2002) Velocity dispersion between ultrasonic and seismic frequencies in brine saturated reservoir sandstones. Geophysics, 67, 254–258. https://doi.org/10.1190/1.1451700
    [Google Scholar]
  37. Kjartansson, E. (1979) Constant Q‐wave propagation and attenuation. Journal of Geophysical Research, 84, (B9), 4737–4748. https://doi.org/10.1029/JB084iB09p04737
    [Google Scholar]
  38. Korneev, V.A., Goloshubin, G.M., Daley, T.M. and Silin, D.B. (2004) Seismic low‐frequency effects in monitoring fluid‐saturated reservoirs. Geophysics, 69, 522–532. https://doi.org/10.1190/1.1707072
    [Google Scholar]
  39. Li, Y., Olin, M., David, E.C., Jackson, I., Schijns, H. and Schmitt, D.R. (2014) Broadband laboratory measurements of dispersion in thermally cracked and fluid‐saturated quartzite and a synthetic analogue. The Leading Edge, 33, 624–632. https://doi.org/10.1190/tle33060624.1
    [Google Scholar]
  40. Li, F., Zhou, H., Jiang, N., Bi, J. and Marfurt, K.J. (2015) Q estimation from reflection seismic data for hydrocarbon detection using a modified frequency shift method. Journal of Geophysics and Engineering, 12(4), 577–586. https://doi.org/10.1088/1742-2132/12/4/577
    [Google Scholar]
  41. Margrave, G.F., Lamoureux, M.P. and Henley, D.C. (2011) Gabor deconvolution: estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics, 76(3), W15–W30. https://doi.org/10.1190/1.3560167
    [Google Scholar]
  42. Mavko, G., Chan, C. and Mukerji, T. (1995) Fluid substitution: estimating changes in Vp without knowing Vs. Geophysics, 60, 1750–1755. https://doi.org/10.1190/1.1443908
    [Google Scholar]
  43. Mavko, G., Mukerji, T. and Dvorkin, J. (2009) The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511626753.
    [Google Scholar]
  44. Mikhaltsevitch, V., Lebedev, M. and Gurevich, B. (2016) Laboratory measurements of the effect of fluid saturation on elastic properties of carbonates at seismic frequencies. Geophysical Prospecting, 64, 799–809. https://doi.org/10.1111/1365-2478.12404
    [Google Scholar]
  45. Mousavi, M.A., Prodanovic, M. and Jacobi, D. (2012) New classification of carbonate rocks for process‐based pore‐scale modeling. SPE Journal, 18(2), 243–263. https://doi.org/10.2118/163073-PA
    [Google Scholar]
  46. Murphy, W.F., Schwartz, L.M. and Hornby, B. (1991) Interpretation physics of Vp and Vs in sedimentary rocks. Transaction SPWLA 32nd Annual Logging Symposium, P. 1–24, Midland, Texas.
  47. Pang, M., Ba, J., Carcione, J.M., Picotti, S., Zhou, J. and Jiang, R. (2019) Estimation of porosity and fluid saturation in carbonates from rock‐physics templates based on seismic Q. Geophysics, 84(6), M25–M36. https://doi.org/10.1190/geo2019-0031.1
    [Google Scholar]
  48. Picotti, S., Carcione, J.M. and Ba, J. (2019) Rock‐physics templates for seismic Q. Geophysics, 84(1), MR13–MR23. https://doi.org/10.1190/geo2018-0017.1
    [Google Scholar]
  49. Pride, S.R., Berryman, J.G. and Harris, J.M. (2004) Seismic attenuation due to wave‐induced flow. Journal of Geophysical Research, 109, B01201. https://doi.org/10.1029/2003JB002639
    [Google Scholar]
  50. Rayleigh, L. (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 34, 94–98. https://doi.org/10.1080/14786440808635681
    [Google Scholar]
  51. Rubino, G.J. and Holliger, K. (2012) Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188, 1088–1102. https://doi.org/10.1111/j.1365-246X.2011.05291.x
    [Google Scholar]
  52. Spencer, J.W. and Shine, J. (2016) Seismic wave attenuation and modulus dispersion in sandstones. Geophysics, 81(3), D211–D231. https://doi.org/10.1190/geo2015-0342.1
    [Google Scholar]
  53. Taner, M.T., Koehler, F. and Sheriff, R.E. (1979) Complex seismic trace analysis. Geophysics, 44, 1041–1063. https://doi.org/10.1190/1.1440994
    [Google Scholar]
  54. Tillotson, P., Chapman, M., Sothcott, J., Best, A.I. and Li, X.‐Y. (2014) Pore fluid viscosity effects on P‐ and S‐wave anisotropy in synthetic silica cemented sandstone with aligned fractures. Geophysical Prospecting, 62, 1238–1252. https://doi.org/10.1111/1365-2478.12194
    [Google Scholar]
  55. Tisato, N. and Quintal, B. (2014) Laboratory measurements of seismic attenuation in sandstone: strain versus fluid saturation effects. Geophysics, 79(5), WB9–WB14. https://doi.org/10.1190/geo2013-0419.1
    [Google Scholar]
  56. Wang, Y. (2007) Seismic time‐frequency spectral decomposition by matching pursuit. Geophysics, 72(1), V13–V20. https://doi.org/10.1190/1.2387109
    [Google Scholar]
  57. Wang, Y. (2002) A stable and efficient approach of inverse Q filtering. Geophysics, 67, 657–663. https://doi.org/10.1190/1.1468627
    [Google Scholar]
  58. Wood, A.B. (1930) A Textbook of Sound. Macmillan Publication Company.
    [Google Scholar]
  59. Xu, S.Y. and Payne, M.A. (2009) Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1), 66–74. https://doi.org/10.1190/1.3064148
    [Google Scholar]
  60. Zeng, Q.C., Guo, M.Q., Jiang, R., Ba, J., Ma, H. and Liu, J. (2017) Fluid sensitivity of rock physics parameters in reservoirs: quantitative analysis. Journal of Seismic Exploration, 26(2), 125–140.
    [Google Scholar]
  61. Zhang, C.J. and Ulrych, T.J. (2002) Estimation of quality factors from CMP records. Geophysics, 67(5), 1542–1547. https://doi.org/10.1190/1.1512799
    [Google Scholar]
  62. Zhang, S.X., Zou, C.C. and Peng, C. (2018) Numerical simulation study of anisotropic velocities in fractured‐vuggy carbonate reservoirs. Journal of Geophysics and Engineering, 15(5), 1851–1863. https://doi.org/10.1088/1742-2140/aabd3f
    [Google Scholar]
  63. Zimmerman, R.W. (1991) Compressibility of Sandstones. New York: Elsevier Science.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13050
Loading
/content/journals/10.1111/1365-2478.13050
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Attenuation; Rock physics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error