1887
Volume 69, Issue 2
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

Migration, velocity and amplitude analysis are the employed processing steps to find the desired subsurface information from seismic reflection data. The presence of free‐surface and internal multiples can mask the primary reflections for which many processing methods are built. The ability to separate primary from multiple reflections is desirable. Connecting Marchenko theory with classical one‐dimensional inversion methods allows to understand the process of multiple reflection elimination as a data‐filtering process. The filter is a fundamental wave field, defined as a pressure and particle velocity that satisfy the wave equation. The fundamental wave field does not depend on the presence or absence of free‐surface multiples in the data. The backbone of the filtering process is that the fundamental wave field is computed from the measured pressure and particle velocity without additional information. Two different multiples‐free datasets are obtained: either directly from the fundamental wave field or by applying the fundamental wave field to the data. In addition, the known schemes for Marchenko multiple elimination follow from the main equation. Numerical examples show that source and receiver ghosts, free‐surface and internal multiples can be removed simultaneously using a conjugate gradient scheme. The advantage of the main equation is that the source wavelet does not need to be known and no pre‐processing is required. The fact that the reflection coefficients can be obtained is an interesting feature that could lead to improved amplitude analysis and inversion than would be possible with other processing methods.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13057
2021-01-16
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/gpr/69/2/gpr13057.html?itemId=/content/journals/10.1111/1365-2478.13057&mimeType=html&fmt=ahah

References

  1. Amundsen, L. (2001) Elimination of free‐surface related multiples without need of the source wavelet. Geophysics66(1), 327–341.
    [Google Scholar]
  2. Araújo, F.V., Weglein, A.B., Carvalho, P.M. and R.H.Stolt. (1994) Inverse scattering series for multiple attenuation: an example with surface and internal multiples. 64th SEG Annual Meeting, San Antonio, Texas, USA, Expanded Abstracts, 4725–4729.
    [Google Scholar]
  3. Bardan, V. and Robinson, E.A. (2018) Inverse problem for Goupillaud‐layered earth model and dynamic deconvolution. Geophysical Prospecting66(8), 1441–1456.
    [Google Scholar]
  4. Brackenhoff, J., Thorbecke, J. and Wapenaar, K. (2019) Monitoring of induced distributed double‐couple sources using Marchenko‐based virtual receivers. Solid Earth10,1301–1319.
    [Google Scholar]
  5. Broggini, F., Snieder, R. and Wapenaar, K. (2012) Focusing the wavefield inside an unknown 1D medium: beyond seismic interferometry. Geophysics77(5), A25–A28.
    [Google Scholar]
  6. Broggini, F., Wapenaar, K., van der Neut, J. and Snieder, R. (2014) Data‐driven Green's function retrieval and application to imaging with multidimensional deconvolution. Journal of Geophysical Research: Solid Earth119,425–441.
    [Google Scholar]
  7. Brown, M.P. and Guitton, A. (2005) Least‐squares joint imaging of multiples and primaries. Geophysics77(5), S79–S89.
    [Google Scholar]
  8. Cui, T. (2020) Marchenko focusing for target‐oriented data processing and full‐waveform inversion. Doctoral thesis, ETH Zurich. https://doi.org/10.3929/ethz-b-000423475.
    [Google Scholar]
  9. Cui, T., Becker, T.S., van Manen, D.‐J., Rickett, J.E. and Vasconcelos, I. (2018) Marchenko redatuming in a dissipative medium: numerical and experimental implementation. Physical Review Applied10(4), 044022.
    [Google Scholar]
  10. da Costa Filho, C.A., Meles, G.A. and Curtis, A. (2017) Elastic internal multiple analysis and attenuation using Marchenko and interferometric methods. Geophysics82(2), Q1–Q12.
    [Google Scholar]
  11. da Costa Filho, C.A., Ravasi, M., Curtis, A. and Meles, G.A. (2014) Elastodynamic Green's function retrieval through single‐sided Marchenko inverse scattering. Physical Review E77(5), 063201.
    [Google Scholar]
  12. Davydenko, M. and Verschuur, D.J. (2017) Full‐wavefield migration: using surface and internal multiples in imaging. Geophysical Prospecting65(1), 7–21.
    [Google Scholar]
  13. de Hoop, A.T. (1995) Handbook of Radiation and Scattering of Waves. Academic Press, Amsterdam.
    [Google Scholar]
  14. Dukalski, M. and de Vos, K. (2018) Marchenko inversion in a strong scattering regime including surface‐related multiples. Geophysical Journal International77(5), 760–776.
    [Google Scholar]
  15. Eisner, E. (1981) The Kunetz relations. Geophysical Prospecting29(4), 529–532.
    [Google Scholar]
  16. Elison, P., Dukalski, M.S., de Vos, K., van Manen, D.J. and Robertsson, J.O.A. (2020) Data‐driven control over short‐period internal multiples in media with a horizontally layered overburden. Geophysical Journal International77(5), 769–787.
    [Google Scholar]
  17. Elison, P., van Manen, D.J., Robertsson, J.O.A., Dukalski, M.S. and de Vos, K. (2018) Marchenko‐based immersive wave simulation. Geophysical Journal International215(2), 1118–1131.
    [Google Scholar]
  18. Hestenes, M.R. and Stiefel, E. (1952) Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409–435.
    [Google Scholar]
  19. Jakubowicz, H. (1998) Wave equation prediction and removal of interbed multiples. 68th SEG Annual Meeting, New Orleans, Louisiana, USA, Expanded Abstracts, 1527–1530.
    [Google Scholar]
  20. Jia, X., Guitton, A. and Snieder, R. (2018) A practical implementation of subsalt Marchenko imaging with a Gulf of Mexico data set. Geophysics77(5), S409–S419.
    [Google Scholar]
  21. Jia, X., Zhao, Y. and Snieder, R. (2019) Data interpolation for 3D Marchenko Green's function retrieval. 89th SEG Annual Meeting, San Antonio, Texas, USA, Expanded Abstracts, 4725–4729.
    [Google Scholar]
  22. Kang, J. (2018) Pressure and velocity fields retrieval based on a new normalization option and 1D model‐free primaries retrieval from marine data. MSc thesis, Delft University of Technology, Department of Geoscience and Engineering.
  23. Karrenbach, M. (1990) Three‐dimensional time‐slice migration. Geophysics55(1), 10–19.
    [Google Scholar]
  24. Kunetz, G. (1964) Généralisation des opérateurs d'anti‐resonance à un nombre quelconque de réflecteurs. Geophysical Prospecting12(3), 283–289 (in French).
    [Google Scholar]
  25. Le Foll, J. (1971) An iterative procedure for the solution of linear and non‐linear equations. In Conference on Applications of Numerical Analysis. Lecture Notes in Mathematics, Vol. 228. Springer, Berlin, pp. 310–355.
  26. Lindsey, J.P. (1960) Elimination of seismic ghost reflections by means of a linear filter. Geophysics77(5), 130–140.
    [Google Scholar]
  27. Liu, J.H., Hu, T.Y. and Peng, G.X. (2018) Suppressing seismic inter‐bed multiples with the adaptive virtual events method. Chinese Journal of Geophysics‐Chinese Edition61(3), 1196–1210 (In Chinese).
    [Google Scholar]
  28. Löer, K., Curtis, A. and Meles, G.A. (2016) Relating source‐receiver interferometry to an inverse‐scattering series to derive a new method to estimate internal multiples. Geophysics81(3), Q27–Q40.
    [Google Scholar]
  29. Lomas, A. and Curtis, A. (2019) An introduction to Marchenko methods for imaging. Geophysics77(5), F35–F45.
    [Google Scholar]
  30. Lomas, A. and Curtis, A. (2020) Marchenko methods in a 3D world. Geophysical Journal International77(5), 296–307.
    [Google Scholar]
  31. Masaya, S. and Verschuur, D.J.E. (2018) Iterative reflectivity‐constrained velocity estimation for seismic imaging. Geophysical Journal International214(1), 1–13.
    [Google Scholar]
  32. Meles, G.A., Löer, K., Ravasi, M., Curtis, A. and da Costa Filho, C.A. (2015) Internal multiple prediction and removal using Marchenko autofocusing and seismic interferometry. Geophysics80(1), A7–A11.
    [Google Scholar]
  33. Meles, G.A., Zhang, L., Thorbecke, J., Wapenaar, K. and Slob, E. (2020) Data‐driven retrieval of primary plane‐wave responses. Geophysical Prospecting68(6), 1834–1846.
    [Google Scholar]
  34. Mildner, C., Broggini, F., Robertsson, J.O.A., van Manen, D.‐J. and Greenhalgh, S. (2017) Target‐oriented velocity analysis using Marchenko‐redatumed data. Geophysics82(2), R75–R86.
    [Google Scholar]
  35. Minato, S. and Ghose, R. (2016) Enhanced characterization of fracture compliance heterogeneity using multiple reflections and data‐driven Green's function retrieval. Journal of Geophysical Research‐Solid Earth121(4), 2813–2836.
    [Google Scholar]
  36. Nowack, R.L. and Kiraz, M.S.R. (2018) Virtual Green's functions using seismic interferometry and Marchenko redatuming. Seismological Research Letters89(2, A), 613–619.
    [Google Scholar]
  37. Ravasi, M. (2017) Rayleigh‐Marchenko redatuming for target‐oriented, true‐amplitude imaging. Geophysics77(5), S439–S452.
    [Google Scholar]
  38. Robinson, E.A. and Treitel, S. (1978) Fine‐structure of normal incidence synthetic seismogram. Geophysical Journal of the Royal Astronomical Society53(2), 289–309.
    [Google Scholar]
  39. Singh, S., Snieder, R., Behura, J., van der Neut, J., Wapenaar, K. and Slob, E.C. (2015) Marchenko imaging: imaging with primaries, internal multiples, and free‐surface multiples. Geophysics77(5), S165–S174.
    [Google Scholar]
  40. Singh, S., Snieder, R., van der Neut, J., Thorbecke, J., Slob, E.C. and Wapenaar, K. (2017) Accounting for free‐surface multiples in Marchenko imaging. Geophysics77(5), R19–R30.
    [Google Scholar]
  41. Slob, E. (2016) Green's function retrieval and Marchenko imaging in a dissipative acoustic medium. Physical Review Letters77(5), 164301.
    [Google Scholar]
  42. Slob, E., Wapenaar, K., Broggini, F. and Snieder, R. (2014) Seismic reflector imaging using internal multiples with Marchenko‐type equations. Geophysics77(5), S63–S76.
    [Google Scholar]
  43. Slob, E., Wapenaar, K. and Treitel, S. (2020) Tutorial: Unified 1D inversion of the acoustic reflection response. Geophysical Prospecting68(5), 1864–1877.
    [Google Scholar]
  44. Staring, M., Pereira, R., Douma, H., van der Neut, J. and Wapenaar, K. (2018) Source‐receiver Marchenko redatuming on field data using an adaptive double focusing method. Geophysics77(5), S579–S590.
    [Google Scholar]
  45. Staring, M. and Wapenaar, K. (2020) Three‐dimensional Marchenko internal multiple attenuation on narrow azimuth streamer data of the Santos basin, Brazil. Geophysical Prospecting68(6), 1864‐1877.
    [Google Scholar]
  46. ten Kroode, F. (2002) Prediction of internal multiples. Wave Motion77(5), 315–338.
    [Google Scholar]
  47. Thorbecke, J., Slob, E., Brackenhoff, J., van der Neut, J. and Wapenaar, K. (2017) Implementation of the Marchenko method. Geophysics77(5), WB29–WB45.
    [Google Scholar]
  48. van Borselen, R.G., Fokkema, J.T. and van den Berg, P.M. (1996) Removal of surface‐related wave phenomena ‐ the marine case. Geophysics77(5), 202–210.
    [Google Scholar]
  49. van den Berg, P.M. (1991) Iterative schemes based on minimization of a uniform error criterion. Progress in Electromagnetics Research‐PIER5, 27–65.
    [Google Scholar]
  50. van der Neut, J., Johnson, J.L., van Wijk, K., Singh, S., Slob, E. and Wapenaar, K. (2017a) A Marchenko equation for acoustic inverse source problems. Journal of the Acoustical Society of America141(6), 4332–4346.
    [Google Scholar]
  51. van der Neut, J., Ravasi, M., Liu, Y. and Vasconcelos, I. (2017b) Target‐enclosed seismic imaging. Geophysics77(5), Q53–Q66.
    [Google Scholar]
  52. van der Neut, J. and Wapenaar, K. (2016) Adaptive overburden elimination with the multidimensional Marchenko equation. Geophysics77(5), T265–T284.
    [Google Scholar]
  53. van Groenestijn, G.J. and Verschuur, D.J. (2009) Estimating primaries by sparse inversion and application to near‐offset data reconstruction. Geophysics77(5), A23–A28.
    [Google Scholar]
  54. Verschuur, D.J., Berkhout, A.J. and Wapenaar, C. P.A. (1992) Adaptive surface‐related multiple elimination. Geophysics77(5), 1166–1177.
    [Google Scholar]
  55. Wapenaar, K. (2014) Single‐sided Marchenko focusing of compressional and shear waves. Physical Review E77(5), 063202.
    [Google Scholar]
  56. Wapenaar, C.P.A. and Berkhout, A.J. (1989) Elastic Wave Field Extrapolation: Redatuming of Single‐ and Multi‐component Seismic Data. Advances in Exploration Geophysics. Elsevier Science Publishers. https://www.elsevier.com/books/elastic-wave-field-extrapolation/wapenaar/978-0-444-88472-5.
    [Google Scholar]
  57. Wapenaar, K., Brackenhoff, J., Thorbecke, J., van der Neut, J., Slob, E. and Verschuur, E. (2018) Virtual acoustics in inhomogeneous media with single‐sided access. Scientific Reports8, 2497.
    [Google Scholar]
  58. Wapenaar, K., Broggini, F., Slob, E. and Snieder, R. (2013) Three‐dimensional single‐sided Marchenko Inverse scattering, data‐driven focusing, Green's function retrieval, and their mutual relations. Physical Review Letters77(5), 084301.
    [Google Scholar]
  59. Wapenaar, K. and Staring, M. (2018) Marchenko‐based target replacement, accounting for all orders of multiple reflections. Journal of Geophysical Research‐Solid Earth123(6), 4942–4964.
    [Google Scholar]
  60. Wapenaar, K., Thorbecke, J., van der Neut, J., Broggini, F., Slob, E. and Snieder, R. (2014) Marchenko imaging. Geophysics77(5), WA39–WA57.
    [Google Scholar]
  61. Wapenaar, K., Thorbecke, J., van der Neut, J., Slob, E. and Snieder, R. (2017) Review paper: Virtual sources and their responses, Part II: data‐driven single‐sided focusing. Geophysical Prospecting65(6), 1430–1451.
    [Google Scholar]
  62. Wapenaar, K., van der Neut, J. and Slob, E. (2016) Unified double‐ and single‐sided homogeneous Green's function representations. Proceedings of the Royal Society A‐Mathematical Physical and Engineering Sciences472(2190).
    [Google Scholar]
  63. Ware, J.A. and Aki, K. (1969) Continuous and discrete inverse‐scattering problems in a stratified elastic medium. I. Plane waves at normal incidence. Journal of the Acoustical Society of America45(4), 911–921.
    [Google Scholar]
  64. Weglein, A.B. (2016) Multiples: Signal or noise?Geophysics81(4), V283–V302.
    [Google Scholar]
  65. Weglein, A.B., Gasparotto, F.A., Carvalho, P.M. and Stolt, R.H. (1997) An inverse scattering series method for attenuating multiples in seismic reflection data. Geophysics62, 1975–1989.
    [Google Scholar]
  66. Zhang, L. and Slob, E. (2019) Free‐surface and internal multiple elimination in one step without adaptive subtraction. Geophysics84(1), A7–A11.
    [Google Scholar]
  67. Zhang, L. and Slob, E. (2020a) A field data example of Marchenko multiple elimination. Geophysics85(2), S65–S70.
    [Google Scholar]
  68. Zhang, L., Slob, E., van der Neut, J. and Wapenaar, K. (2018) Artifact‐free reverse time migration. Geophysics83(5), A65–A68.
    [Google Scholar]
  69. Zhang, L. and Slob, E.C. (2020b) A fast algorithm for multiple elimination and transmission compensation in primary reflections. Geophysical Journal International77(5), 371–377.
    [Google Scholar]
  70. Zhang, L. and Staring, M. (2018) Marchenko scheme based internal multiple reflection elimination in acoustic wavefield. Journal of Applied Geophysics159, 429–433.
    [Google Scholar]
  71. Zhang, L., Thorbecke, J., Wapenaar, K. and Slob, E. (2019) Transmission compensated primary reflection retrieval in the data domain and consequences for imaging. Geophysics84(4), Q27–Q36.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13057
Loading
/content/journals/10.1111/1365-2478.13057
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Multiple attenuation; Reverse‐time migration; Seismic imaging

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error