1887
Volume 69, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We develop a workflow to estimate elastic attributes ( and ) of Pre‐Salt carbonate reservoirs using the Xu and Payne rock physics model in a depth‐variant multimineralogic fashion and apply it to one calibration and four extrapolation wells in a field in the Brazilian Santos Basin. Some of the parameters were stochastically simulated in a Bayesian framework to handle the model non‐uniqueness. Nuclear magnetic resonance porosity and mineralogic logs and x‐ray powder diffraction data from the studied wells and literature reference values were used for elastic solid media and dual‐porosity network modelling, bringing geological reasoning to the proposed workflow. Using rock physics templates, we improved our understanding of the reservoir petroelastic trends and devised alternative model parameterizations. Since the model was parameterized in a multimineralogic fashion with depth‐variant mineralogic information (e.g. volumes of carbonate, quartz and clay) as input, we improved elastic attribute estimations within the reservoir, increasing the model predictive power, compared to the common practice of allowing only porosity to vary with depth and representing the matrix properties by a depth‐invariant homogeneous or mixed mineral. We also investigated the workflow robustness and non‐uniqueness by studying its dependence on the choice of calibration well.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13060
2021-02-12
2024-04-26
Loading full text...

Full text loading...

References

  1. Adelinet, M., Barthélémy, J.‐F., Bemer, E. and Hamon, Y. (2019) Effective medium modeling of diagenesis impact on the petroacoustic properties of carbonate rocks. Geophysics, 84, WA43–WA57.
    [Google Scholar]
  2. Agersborg, R. (2007) Seismic properties of carbonate rocks with emphasis on effects of the pore structure. PhD thesis, University of Bergen.
  3. Ahr, W.M. (2008) Geology of Carbonate Reservoirs: The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks. Wiley.
    [Google Scholar]
  4. Anselmetti, F. and Eberli, G. (1993) Controls on sonic velocity in carbonates. Pure and Applied Geophysics, 141(2–4), 287–323.
    [Google Scholar]
  5. Anselmetti, F.S. and Eberli, G.P. (1997) Sonic velocity in carbonate sediments and rocks. In Carbonate Seismology, chapter 4, pages 53–74. Society of Exploration Geophysicists, ch. 4, pp. 53–74.
    [Google Scholar]
  6. Avseth, P., Mukerji, T. and Mavko, G. (2005) Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.
    [Google Scholar]
  7. Azbel, K., Rodina, O., Baechle, G., Gouveia, W., Gracioso, D., Nogueira, F., Wang, P., Centeno, R. and Centeno, R. (2016) De‐risking reservoir quality and presence through seismic inversion and rock physics analysis in Brazil's Pre‐Salt carbonates. In Quantitative Seismic Interpretation of Lacustrine Reservoirs Workshop. EAGE/SBGf, Expanded Abstracts.
  8. Baechle, G.T., Colpaert, A., Eberli, G.P. and Weger, R.J. (2008) Effects of microporosity on sonic velocity in carbonate rocks. The Leading Edge, 27(8), 1012–1018.
    [Google Scholar]
  9. Baechle, G.T., Weger, R.J., Eberli, G.P. and Masaferro, J.L. (2004) The role of macroporosity and microporosity in constraining uncertainties and in relating velocity to permeability in carbonate rocks. In SEG 74th Annual Meeting.
    [Google Scholar]
  10. Boyd, A., Souza, A., Carneiro, G., Machado, V., Trevizan, W., Santos, B., Netto, P., Bagueira, R., Polinski, R. and Bertolini, A. (2015) Presalt carbonate evaluation for Santos Basin, Offshore Brazil. Petrophysics, 56, 577–591.
    [Google Scholar]
  11. Cantrell, D. and Hagerty, R. (1999) Microporisty in Arab formation carbonates, Saudi Arabia. GeoArabia, 4(2), 129–154.
    [Google Scholar]
  12. Choquette, P. and Pray, L. (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2), 207–250.
    [Google Scholar]
  13. Cilli, P. and Chapman, M. (2018) Modelling the elastic and electrical properties of rocks with complex pore geometries. In 80th EAGE Conference and Exhibition. EAGE, Expanded Abstracts.
  14. Codo, J. and Fournier, F. (2016) Rock physics modeling of diagenetic processes of pre‐salt carbonates. In Quantitative Seismic Interpretation of Lacustrine Reservoirs Workshop. EAGE/SBGf, Expanded Abstracts.
  15. Costa, M., Silva, E., Santos, M. and Vasquez, G. (2016) Quantification of 4d seismic response in pre‐salt carbonates via time shift analysis. In Quantitative Seismic Interpretation of Lacustrine Reservoirs Workshop. EAGE/SBGf, Expanded Abstracts.
  16. Dias, J., Lopez, J. and Velloso, R. (2019) A workflow for multimineralogic carbonate rock physics modeling in a Bayesian framework. In First EAGE Workshop on Pre‐Salt Reservoir: From Exploration to Production. EAGE, Expanded Abstracts.
  17. Dvorkin, J., Gutierrez, M. and Grana, D. (2014) Seismic Reflections of Rock Properties. Cambridge University Press.
    [Google Scholar]
  18. Eberli, G.P., Baechle, G.T., Anselmetti, F.S. and Incze, M.L. (2003) Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge, 22(7), 654–660.
    [Google Scholar]
  19. Ellis, D.V. and Singer, J.M. (2007) Well Logging for Earth Scientists. Springer.
    [Google Scholar]
  20. Farias, F., Szatmari, P., Bahniuk, A. and França, A. (2019) Evaporitic carbonates in the pre‐salt of Santos Basin – genesis and tectonic implications. Marine and Petroleum Geology, 105, 251–272.
    [Google Scholar]
  21. Fournier, F., Pellerin, M., Villeneuve, Q., Teillet, T., Hong, F., Poli, E., Borgomano, J., Leonide, P. and Hairabian, A. (2018) The equivalent pore aspect ratio as a tool for pore type prediction in carbonate reservoirs. AAPG Bulletin, 102, 1343–1377.
    [Google Scholar]
  22. Gassmann, F. (1951) Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.
    [Google Scholar]
  23. Grana, D. and Della Rossa, E. (2010) Probabilistic petrophysical‐properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 75, O21–O37.
    [Google Scholar]
  24. Hill, R. (1963) Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372.
    [Google Scholar]
  25. Jakobsen, M., Hudson, J.A. and Johansen, T.A. (2003a) T‐matrix approach to shale acoustics. Geophysical Journal International, 154(2), 533–558.
    [Google Scholar]
  26. Jakobsen, M., Johansen, T.A. and McCann, C. (2003b) The acoustic signature of fluid flow in complex porous media. Journal of Applied Geophysics, 54(3–4), 219–246.
    [Google Scholar]
  27. Johann, P. and Monteiro, R. (2016) Geophysical reservoir characterization and monitoring at Brazilian pre‐salt oil fields. OTC‐27246‐MS. In Offshore Technology Conference (OTC), Houston, TX.
    [Google Scholar]
  28. Longman, M.W. (1985) Fracture porosity in reef talus of a Miocene pinnacle‐reef reservoir, Nido B Field, The Philippines. In Carbonate Petroleum Reservoirs. Springer, pp. 547–560.
    [Google Scholar]
  29. Marion, D. and Jizba, D. (1997) Acoustic properties of carbonate rocks: Use in quantitative interpretation of sonic and seismic measurements. In Carbonate Seismology. Society of Exploration Geophysicists, ch. 5, pp. 75–94.
    [Google Scholar]
  30. Mavko, G., Mukerji, T. and Dvorkin, J. (2009) The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press.
    [Google Scholar]
  31. Mirkamali, M., Javaherian, A., Hassani, H., Saberi, M. and Hosseini, S. (2020) Quantitative pore–type characterization from well logs based on the seismic petrophysics in a carbonate reservoir. Geophysical Prospecting, 68, 2195–2216.
    [Google Scholar]
  32. Mukerji, T., Jørstad, A., Avseth, P., Mavko, G. and Granli, J.R. (2001) Mapping lithofacies and pore‐fluid probabilities in a north sea reservoir: seismic inversions and statistical rock physics. Geophysics, 66, 988–1001.
    [Google Scholar]
  33. Nelson, R.A. (2001) Geologic Analysis of Naturally Fractured Reservoirs. Elsevier.
    [Google Scholar]
  34. Ødegaard, E. and Avseth, P. (2004) Well log and seismic data analysis using rock physics templates. First Break, 22(10), 37–43.
    [Google Scholar]
  35. Oliveira, L., Pimentel, F., Peiro, M., Amaral, P. and Christovan, J. (2018) A seismic reservoir characterization and porosity estimation workflow to support geological model update: pre‐salt reservoir case study, Brazil. First Break, 36, 75–85.
    [Google Scholar]
  36. Reuss, A. (1929) Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49–58.
    [Google Scholar]
  37. Rosa, M., Cavalcante, J., Miyakawa, T. and de Freitas, L.C.S. (2018) The giant Lula field: World's largest oil production in ultra‐deep water under a fast‐track development. OTC‐29043‐MS. In Offshore Technology Conference, Houston, TX.
    [Google Scholar]
  38. Teixeira, L., Cruz, N., Silvany, P. and Fonseca, J. (2017) Quantitative seismic interpretation integrated with well‐test analysis in turbidite and presalt reservoirs. The Leading Edge, 36(11), 931–937.
    [Google Scholar]
  39. Vasquez, G.F., Morschbacher, M.J., dos Anjos, C.W.D., Silva, Y.M.P., Madrucci, V. and Justen, J.C.R. (2019) Petroacoustics and composition of presalt rocks from Santos Basin. The Leading Edge, 38(5), 342–348.
    [Google Scholar]
  40. Voigt, W. (1907) Bestimmung der Elastizitätskonstanten von Eisenglanz. Annalen der Physik, 24, 129–140.
    [Google Scholar]
  41. Vrugt, J.A. (2016) Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environmental Modelling and Software, 75, 273–316.
    [Google Scholar]
  42. Vrugt, J.A., ter Braak, C.C.G.H., Diks, D.H., Robinson, B. and Hyman, J. (2009) Accelerating Markov chain Monte Carlo simulation by differential evolution with self‐adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3), 273–290.
    [Google Scholar]
  43. Vrugt, J.A., ter Braak, C., Clark, M., Hyman, J. and Robinson, B. (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research, 44(12), 1–15.
    [Google Scholar]
  44. Wang, Z. (1997) Seismic properties of carbonate rocks. In Carbonate Seismology. Society of Exploration Geophysicists, ch. 3, pp. 29–52.
    [Google Scholar]
  45. Xu, S. and Payne, M.A. (2009) Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1), 66–74.
    [Google Scholar]
  46. Zirczy, H., Hwang, Y.K. and Gelinksy, S. (2018) Quantitative seismic reservoir modeling–optimizing field development value through early and continuous data integration. OTC‐28251‐MS. In Offshore Technology Conference, Kuala Lumpur, Malaysia.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13060
Loading
/content/journals/10.1111/1365-2478.13060
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error