1887
Volume 69, Issue 8-9
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Elastic full‐waveform inversion can increase the resolution of reservoir characterization using seismic data. However, full‐waveform inversion for realistic anisotropic media suffers from the trade‐offs between the medium parameters and strongly relies on the accuracy of the initial model. Here, we employ a regularization methodology that utilizes geologically consistent information to reduce the inversion non‐linearity and crosstalk between the parameters. The geologic constraints are obtained from well logs and interpolated along major horizons in the migrated image. The algorithm, designed for transversely isotropic media with a tilted symmetry axis, is applied to ocean‐bottom data acquired at Volve field in the North Sea. The facies‐based constraints help build high‐resolution velocity fields and accurately image the reservoir region. In particular, the developed algorithm increases the resolution of the P‐ and S‐wave symmetry‐direction velocities and other parameters at the reservoir level. The facies‐based inversion also provides robust estimates of density, which is inverted simultaneously with the velocity fields. Overall, even relatively sparse prior information proves to be sufficient for the proposed methodology to achieve a much higher spatial resolution than the unconstrained full‐waveform inversion.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.13139
2021-10-08
2021-12-01
Loading full text...

Full text loading...

References

  1. Alkhalifah, T. (2016) Full waveform inversion in an anisotropic world: where are the parameters hiding?. EAGE Publications.
    [Google Scholar]
  2. Alkhalifah, T. & Plessix, R.E. (2014) A recipe for practical fullwaveform inversion in anisotropic media: an analytical parameter resolution study. Geophysics, 79(3), R91–R101.
    [Google Scholar]
  3. Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., Thore, P. & Virieux, J. (2013) Regularized seismic full waveform inversion with priormodel information. Geophysics, 78(2), R25–R36.
    [Google Scholar]
  4. Audebert, F., Dirks, V. & Pettenati, A. (2006) TTI Anisotropic Depth Migration: what tilt estimate should we use? SEG 76th Annual International Meeting, pp. 2382–2386.
  5. Behera, L. (2017) Elastic anisotropic finite‐difference full‐wave modeling and imaging of the tilted transversely isotropic (TTI) media. SEG 87th Annual International Meeting, pp. 299–304.
  6. Bohlen, T. (2002) Parallel 3‐D viscoelastic finite‐difference seismic modelling. Computers & Geosciences, 28, 887–899.
    [Google Scholar]
  7. Brossier, R., Operto, S. & Virieux, J. (2009) Seismic imaging of complex onshore structures by 2D elastic frequency‐domain full‐waveform inversion. Geophysics, 74(6), WCC105–WCC118.
    [Google Scholar]
  8. Dutta, G., Sinha, M. & Schuster, G.T. (2014) A crosscorrelation objective function for least‐squares migration and visco‐acoustic imaging. SEG 84th Annual International Meeting, pp. 3985–3990.
  9. Choi, Y. & Alkhalifah, T. (2012) Application of multi‐source waveform inversion to marine streamer data using the global correlation norm. Geophysical Prospecting, 60(4), 748–758.
    [Google Scholar]
  10. Guitton, A., Ayeni, G. & Daz, E. (2012) Constrained full‐waveform inversion by model reparameterization. Geophysics, 77(2), R117–R127.
    [Google Scholar]
  11. Guitton, A. & Alkhalifah, T. (2017) A parameterization study for elastic VTI full waveform inversion of hydrophone components: synthetic and North Sea field data examples. Geophysics, 82(6), R299–R308.
    [Google Scholar]
  12. Hager, W. W. & Zhang, H. (2006) A survey of nonlinear conjugate gradient methods. Pacific Journal of Optimization, 6, 35–58.
    [Google Scholar]
  13. Jarillo Michel1, O. & Tsvankin, I. (2017) Waveform inversion for microseismic velocity analysis and event location in VTI media. Geophysics, 82(4), WA95–WA103.
    [Google Scholar]
  14. Kamath, N. & Tsvankin, I. (2016) Elastic full‐waveform inversion for VTI media: methodology and sensitivity analysis. Geophysics, 81(2), C53–C68.
    [Google Scholar]
  15. Kazei, V. & Alkhalifah, T. (2019) Scattering radiation pattern atlas: what properties cannot be resolved by anisotropic elastic full‐waveform inversion?Journal of Geophysical Research, 124(3), 2781–2811.
    [Google Scholar]
  16. Li, Y., Alkhalifah, T. & Zhang, Z. (2021) Deep‐learning assisted regularized elastic full waveform inversion using velocity distribution information from wells. Geophysical Journal International, 226, 1322–1335.
    [Google Scholar]
  17. Li, F., Zhou, H., Wang, Z. & Wu, X. (2021) ADDCNN: an attention‐based deep dilated convolutional neural network for seismic facies analysis with interpretable spatial– spectral maps. IEEE Transactions on Geoscience and Remote Sensing, 59(2), 1733–1744.
    [Google Scholar]
  18. Li, J., Pan, W. & Innanen, K. (2017) Gradient calculation for anisotropic FWI. Geoconvention, 1–5.
    [Google Scholar]
  19. Lindsay, R. & Koughnet, R.V. (2001) Sequential backus averaging: upscaling well logs to seismic wavelengths. The Leading Edge, 20(2), 188–191.
    [Google Scholar]
  20. Liu, M., Jervis, M., Li, W. & Nivlet, P. (2020) Seismic facies classification using supervised convolutional neural networks and semisupervised generative adversarial networks. Geophysics, 85(4), O47–O58.
    [Google Scholar]
  21. Martin, G., Wiley, R. & Marfurt, K.J. (2006) Marmousi2: an elastic upgrade for Marmousi. The Leading Edge, 25, 156–166.
    [Google Scholar]
  22. Napoli, O.O., Martins do Rosario, V., Navarro, J.P., Silva, P.M.C. & Borin, E. (2020) Accelerating multi‐attribute unsupervised seismic facies analysis with RAPIDS. Preprint, arXiv:2007.15152.
  23. Oh, J.W., Shin, Y., Alkhalifah, T. & Min, DJ. (2020) Multistage elastic full‐waveform inversion for tilted transverse isotropic media. Geophysical Journal International, 223(1), 57–76.
    [Google Scholar]
  24. Plessix, R.‐E. & Mulder, W. A. (2004) Frequency‐domain finite‐difference amplitude‐preserving migration. Geophysical Journal International, 157, 975–987.
    [Google Scholar]
  25. Pratt, R.G. & Smithyman, B. (2018) Full waveform inversion for density: reciprocity, divergence, parameter resolution, and other issues. 80th EAGE Conference and Exhibition. pp. 1–5.
  26. Qu, Y., Li, Z. & Huang, J. (2017) Elastic full‐waveform inversion for surface topography. Geophysics, 82(5), R269–R285.
    [Google Scholar]
  27. Rocha, D., Tanushev, N. & Sava, P. (2017) Anisotropic elastic wavefield imaging using the energy norm. Geophysics, 82(3), S225–S234.
    [Google Scholar]
  28. Shipp, R.M. & Singh, S.C. (2002) Two‐dimensional full wavefield inversion of wide‐aperture marine seismic streamer data. Geophysical Journal International, 151(2), 325–344.
    [Google Scholar]
  29. Singh, S., Tsvankin, I. & Zabihi Naeini, E. (2018) Bayesian framework for elastic full‐waveform inversion with facies information. The Leading Edge, 37(12), 924–931.
    [Google Scholar]
  30. Singh, S., Tsvankin, I. & Zabihi Naeini, E. (2020a) Elastic full‐waveform inversion with geologic information for tilted TI media. EAGE 82nd Annual Conference and Exhibition, pp. 1–5.
  31. Singh, S., Tsvankin, I. & Zabihi Naeini, E. (2020b) Full‐waveform inversion for elastic VTI media with borehole constraints. Geophysics, 85(6), R553–R563.
    [Google Scholar]
  32. Singh, S., Tsvankin, I. & Zabihi Naeini, E. (2021) Elastic FWI for orthorhombic media with lithologic constraints applied via machine learning. Geophysics, 86(4), R589–R602.
    [Google Scholar]
  33. Singh, S. & Tsvankin, I. (2020) Sensitivity analysis of FWI for elastic orthorhombic media. SEG 88th Annual International meeting, pp. 171–175.
  34. Szydlik, T., Smith, P., Way, S., Aamodt, L. & Friedrich, C. (2007) 3D PP/PS prestack depth migration on the Volve field. First Break, 25(4), 43–47.
    [Google Scholar]
  35. Tarantola, A. (1984) Inversion of seismic reflectiondata in the acoustic approximation. Geophysics, 49(8), 1259–1266.
    [Google Scholar]
  36. Tsvankin, I. & Grechka, V. (2011) Seismology of azimuthally anisotropic media and seismic fracture characterization. Tulsa, OK: Society of Exploration Geophysicists.
    [Google Scholar]
  37. Tsvankin, I. (2012) Seismic signatures and analysis of reflection data in anisotropic media, 3rd edition. Tulsa, OK: Society of Exploration Geophysicists.
    [Google Scholar]
  38. Wang, X. & Tsvankin, I. (2013) Multiparameter TTI tomography of P‐wave reflection and VSP data. Geophysics, 78(5), WC51–WC63.
    [Google Scholar]
  39. Zabihi Naeini, E. & Hale, D. (2015) Image‐ and horizon‐guided interpolation. Geophysics, 80(3), V47–V56.
    [Google Scholar]
  40. Zhang, Z. & Alkhalifah, T. (2019) Regularized elastic full‐waveform inversion using deep learning. Geophysics, 84(5), R741–R751.
    [Google Scholar]
  41. Zhang, Z. and Alkhalifah, T. (2020) High‐resolution reservoir characterization using deep learning‐aided elastic full‐waveform inversion. The North Sea field data example, Geophysics, 85(4), WA137–WA146.
    [Google Scholar]
  42. Zhang, Z., Alkhalifah, T., Zabihi Naeini, E. & Sun, B. (2018) Multiparameter elastic full waveform inversion with facies‐based constraints. Geophysical Journal International, 213(3), 2112–2127.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.13139
Loading
/content/journals/10.1111/1365-2478.13139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error