1887
Volume 12 Number 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

An analytical expression for the time‐distance curve of seismic waves travelling in a medium consisting of intrinsically anisotropic layers with arbitrarily dipping plane interfaces can be given in terms of the “co‐ordinates” of the interfaces (length of the perpendicular from the shotpoint to the interface, strike ν and dip α of the interface) if for each layer the velocity is given as a function of the orientation of the wave normal. The interpretation of the time‐distance curve is understood as the inverse process, namely finding an expression for the co‐ordinates in terms of some characteristics of the time‐distance curve, e.g. intercept times and apparent velocities. In addition, it is useful to know where the “limiting ray”, which is the ray connecting shotpoint and last geophone, enters and leaves a specific layer, for it is only on the medium between these two points that information can be obtained by interpretation. As ray and wave normal do not generally coincide in anisotropic media, the location of these points cannot be calculated from the co‐ordinates and the direction of the wave normal without recourse to the functional dependence between the directions of ray and wave normal.

An analytical solution of this problem would involve the solution of a number of equations, implicitly containing several parameters. Successive approximation would be rather cumbersome. Instead, a graphical method is proposed which yields all pertinent information without calculation.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1964.tb01912.x
2006-04-27
2024-04-28
Loading full text...

Full text loading...

References

  1. BACKUS, G. E., 1962, Long‐Wave Elastic Anisotropy produced by horizontal layering. Journal of Geophysical Research67, 4427–4440.
    [Google Scholar]
  2. BRUGGEMANN, D. A. G., 1937, Berechnung der verschiedenen physikalischen Konstanten von heterogenen Substanzen, Teil 3 Die elastischen Konstanten der quasi‐isotropen Mischkörper aus isotropen Substanzen: Ann. Phys. (5), 29, 160.
    [Google Scholar]
  3. CHOLET, J., and RICHARD, H., 1954, A test on elastic anisotropy measurements at Berriane (North Sahara). Geophysical Prospecting2, 232–246.
    [Google Scholar]
  4. GIESEL, W., 1963, Elastische Anisotropie in tektonisch verformten Sedimentgesteinen. Geophysical Prospecting11, 423–458.
    [Google Scholar]
  5. HAMILTON, W. R., 1837, Theory of Systems of rays. Trans. Roy. Irish Acad. 17, 1.
    [Google Scholar]
  6. HAGEDOORN, J. G., 1954, A practical example of an anisotropic velocity layer. Geophysical Prospecting2, 52–60.
    [Google Scholar]
  7. HELBIG, K., 1958, Elastische Wellen in anisotropen Medien. Gerlands Beiträge zur Geophysik67, 177–211; 256–288.
    [Google Scholar]
  8. KLEYN, A. H., 1956, On seismic wave propagation in anisotropic media with applications in the Betun area, South Sumatra. Geophysical Prospecting 4, 56–69.
  9. KRAUT, E. A., 1963, Advances in the theory of anisotropic elastic wave propagation. Reviews of Geophysics1, 401–448.
    [Google Scholar]
  10. KREY, TH., and HELBIG, K., 1956, A theorem concerning anisotropy of stratified media and its significance for reflection seismics. Geophysical Prospecting4, 294–302.
    [Google Scholar]
  11. LOEB, J., 1963, La surface d'onde dans un milieu élastique anisotrope. Geophysical Prospecting11, 73–89.
    [Google Scholar]
  12. OKS, M., 1938, Influencia de la anisotropia elastica de los estratos en los calculos sismográficos de refracción. Boletin de informaciones petroleras15, 109–115.
    [Google Scholar]
  13. POSTMA, G. W., 1955, Wave propagation in a stratified medium. Geophysics20, 780–806.
    [Google Scholar]
  14. RICKER, N., 1951, The form and laws of propagation of seismic wavelets. Proc. 3rd World Petroleum Congress, Sect. 1, 514–536.
    [Google Scholar]
  15. RIZNICHENKO, YU. W., 1949, On seismic quasi‐anisotropy. Isw. Akad. Nauk SSSR, Ser. geograf. i geof. 13, 518–540.
    [Google Scholar]
  16. RUDZKI, M. P., 1911, Parametrische Darstellung der elastischen Welle in anisotropen Medien. Anz. d. Akad. d. Wiss. Krakau503.
    [Google Scholar]
  17. UHRIG, L. F., and VAN MELLE, F. A., 1955, Velocity anisotropy in stratified media. Geophysics20, 774–779.
    [Google Scholar]
  18. ZISMAN, W. A., 1933, Youngs modulus and Poisson's ratio with reference to geophysical applications. Compressibility and anisotropy of rocks at and near the surface. Proc. Nat. Acad. Sci. ( Washington ) 19, 653.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1964.tb01912.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error