Volume 30 Number 6
  • E-ISSN: 1365-2478



Geoelectric soundings were used to investigate the younger fault activity (Middle and Early Pleistocene) of the southwestern fault margin area of the Central Graben (and extension of the Rhine Graben) in the southern Netherlands and northern Belgium. Some effects of this fault activity can still be observed in the present geomorphology and hydrography. Investigations have been concentrated on the uppermost 20–30 m, consisting mainly of Middle and Early Pleistocene fluviatile deposits. Marshy clays and loams are most conductive. They alternate with large sand beds and gravelly gully infillings, characterized by high specific resistivities. Problems in the interpretation of the geoelectric data, caused by the variability of the deposits, are partially solved by in‐situ resistivity measurements (“mini‐electric” measurements). In spite of the lithologic inhomogeneity, a few marker horizons allow the geologic structure to be determined. Some new tectonic boundaries have been traced. The movements along the faults during the Quaternary are very small (less than 10 m). Therefore, the network of soundings has to be very dense and a very intensive analysis of the soundings is necessary. The results also have a hydrogeologic significance. This project illustrates the possibility of locating small tectonic structures in relatively inhomogeneous deposits by a detailed and carefully designed geoelectric survey.


Article metrics loading...

Loading full text...

Full text loading...


  1. Doppert, J. W. C., Ruegg, G. H., Van Staalduinen, C. J., Zagwijn, W. H. and Zandstra, J. G.1975, Formaties van het Kwartair en Boven‐Tertiair in Nederland, pp. 11–55 in Toelichtingen bij Geologische Overzichtskaarten van Nederland, ed. by Zagwijn, W. H. and Van Staalduinen, C. J. , Rijks Geologische Dienst, 1975, Haarlem .
    [Google Scholar]
  2. Ghosh, D. P.1971a, The application of linear filter theory to the direct interpretation of geoelectric resistivity sounding measurements, Geophysical Prospecting19, 192–217.
    [Google Scholar]
  3. Ghosh, D. P.1971b, Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontal stratified earth, Geophysical Prospecting19, 769–775.
    [Google Scholar]
  4. Johansen, H. K.1975, An interactive computer/graphic‐display‐terminal system for interpretation of resistivity soundings, Geophysical Prospecting23, 449–458.
    [Google Scholar]
  5. Koefoed, O.1970, A fast method for determining the layer distribution from the raised kernel function in geoelectrical soundings, Geophysical Prospecting18, 564–570.
    [Google Scholar]
  6. Krolikowski, C.1968, Der Einfluss des Elektrodenmasse auf die Widerstandsmessung des Bodens in Miniatur‐Geoelektrik, Acta Geophysica Polonica16, 195–199.
    [Google Scholar]
  7. Nash, J. C.1978, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, Adam Hilger Ltd, Bristol .
    [Google Scholar]
  8. Patijn, R. J. H.1963, Tektonik von Limburg and Umgebung, Verhandelingen van het Koninklijk Nederlands Geologisch en Mijnbouwkundig Genootschap, Geologische Serie21–2, 9–24.
    [Google Scholar]
  9. Paulissen, E. and Gullentops, F.1982, De hoofdterrasafzettingen in belgisch Limburg: geomorfologie, mineralogie, petrografie en tektoniek, Acta Geographica Lovaniensia, in press.
  10. Van Montfrans, H. M.1975, Toelichting bij de ondiepe breukenkaart met diepteligging van de Formatie van Maasluis, pp. 103–108 in Toelichtingen bij Geologische Overzichtskaarten van Nederland, ed. by Zagwijn, W. H. and Van Staalduinen, C. J. , Rijks Geologische Dienst, Haarlem .
    [Google Scholar]
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error