1887
Volume 33 Number 8
  • E-ISSN: 1365-2478

Abstract

A

Gradient measurements in a homogeneous electrical primary field can easily be interpreted for simple models. The simplified solution (conducting or resistant body in a homogeneous space in a homogeneous electrical field) is often sufficiently accurate, as comparisons with the exact solution (body of finite resistivity in a homogeneous half‐space in a quasihomogeneous electrical field) show. The exact geometry of the body cannot be determined by gradient measurements; the same anomaly of apparent resistivity can be caused by different bodies. In particular, the similarity between a sphere and a cube of the same volume is very high.

There is a distinct influence of the resistivity of the overburden: the higher this resistivity is, the stronger is the effect caused by a buried body.

If a deviation of 10% of the apparent resistivity is assumed as the lower boundary at which a buried body can be detected by gradient measurements, the depth of investigation for a three‐dimensional body is approximately equal to its width; in the two‐dimensional case the thickness of the overburden can be twice the width. If the overburden has a resistivity which is higher than the resistivity of the substratum, these depths are greater. The greatest possible depth is approximately three times the width of the body.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1985.tb01362.x
2006-04-27
2020-09-26
Loading full text...

Full text loading...

References

  1. Brass, G., Flathe, H. and Schulz, R.1981, Resistivity profiling with different electrode arrays over a graphite deposit, Geophysical Prospecting29, 589–600.
    [Google Scholar]
  2. Dieter, K., Paterson, N. R. and Grant, F. S.1969, Induced polarization and resistivity type curves for three‐dimensional bodies, Geophysics34, 615–632.
    [Google Scholar]
  3. Grant, F. S. and West, G. R.1965, Interpretation Theory in Applied Geophysics, McGraw‐Hill Book Company, New York .
    [Google Scholar]
  4. Hummel, J. N.1928a, Über die Tiefenwirkung bei geoelektrischen Potentiallinienmethoden, Zeitschrift für Geophysik4, 22–27.
    [Google Scholar]
  5. Hummel, J. N.1928b, Bedeutung mehrer Schichten verschiedener elektrischer Leitfähigkeit für die Auffindung darunter befindlicher Störungskörper, Zeitschrift für Geophysik4, 178–203.
    [Google Scholar]
  6. Mundry, E. and Schulz, R.1982, Entwicklung eines quantitativen Auswerteverfahrens für Gleichstrom‐Widerstandsmessungen zur Prospektion auf mineralische Rohstoffe bei beliebiger Widerstandsverteilung im Untergrund, BMFT‐FB‐T 82–239, Fachinformationszentrum Karlsruhe .
    [Google Scholar]
  7. Okabe, M.1981, Boundary element method for the arbitrary inhomogeneities problem in electrical prospecting, Geophysical Prospecting29, 39–59.
    [Google Scholar]
  8. Roy, A. and Apparao, A.1971, Depth of investigation in direct current methods, Geophysics36, 943–959.
    [Google Scholar]
  9. Schulz, R.1983, Potentialberechnungen zur Interpretation von gleichstromgeoelektrischen Messungen über dreidimensionalen Störkörpern, Dissertation T.U. Clausthal .
    [Google Scholar]
  10. Schulz, R.1985, The method of integral equation in direct current resistivity method and its accuracy, Journal of Geophysics56, 192–200.
    [Google Scholar]
  11. Snyder, D. D. and Merkel, R. M.1973, Analytical models for the interpretation of electrical surveys using buried current electrodes, Geophysics38, 513–529.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1985.tb01362.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error