1887
Volume 35 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

A numerical method for calculating the topographic reduction of gravity measurements is developed which follows the approximation of the topography by a single valued function. The method involves the conversion of the volume integral for the gravity effect into a two‐dimensional definite integral. The definite integral is partly solved by explicit, and partly by numerical, integration, using the Gauss‐Legendre quadrature formula. This method is well suited to calculating the topographic reduction of 50 to approximately 1000 m from the station–especially for microgravimetric surveys in areas of steeply sloping terrain. To test the method in practice it was applied in an area of rough relief in Keban (East Turkey).

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1987.tb00803.x
2006-04-27
2020-04-02
Loading full text...

Full text loading...

References

  1. Abramowitz, M. and Stegun, I.1965. Handbook of Mathematical Functions, 916–919, National Bureau of Standards.
    [Google Scholar]
  2. Blizkovsky, M.1979. Processing and applications in microgravity surveys, Geophysical Prospecting27, 848–861.
    [Google Scholar]
  3. Boedecker, G.1975. An economically working method for computing the gravimetric terrain correction, Journal of Geophysics41, 513–521.
    [Google Scholar]
  4. Bott, M.H.P.1959. The use of electronic digital computers for the evaluation of gravimetric terrain corrections, Geophysical Prospecting7, 45–54.
    [Google Scholar]
  5. Campbell, D.L.1980. Gravity terrain corrections for stations on a uniform slope–A power law approximation, Geophysics45, 109–112.
    [Google Scholar]
  6. Davis, P.J. and Rabinowitz, P.1975. Methods of Numerical Integration, Academic Press.
    [Google Scholar]
  7. Ehrismann, W. and Lettau, O.1971. Topographische Reduktion von Schwerewerten in der näheren und weiteren Stationsumgebung mit Digitalrechnern, Archiv für Meteorologie, Geophysik und Bioklimatologie, A 20, 383–396.
    [Google Scholar]
  8. Ehrismann, W., Müller, G., Rosenbach, O. and Sperlich, N.1966. Topographic reductions of gravity measurements by the aid of digital computers. Bolletino di Geofisica Teorica ed Applicata8, 1–20.
    [Google Scholar]
  9. von Frese, R.R.B., Hinze, W.J., Braile, L.W. and Luca, A.J.1981. Spherical‐earth gravity and magnetic anomaly modeling by Gauss‐Legendre quadrature integration, Journal of Geophysics49, 234–242.
    [Google Scholar]
  10. Götze, H.J., Steinhauser, P. and Rosenbach, O.1980. Die Bestimmung der mittleren Geländehöhen im Hochgebirge für die topographische Reduktion von Schweremessungen, Berichte über den Tiefbau der Ostalpen 9.
  11. Granar, L.1967. On topographic gravity corrections, Geoexploration5, 65–70.
    [Google Scholar]
  12. Granser, H.1984. Gravity effect calculation of two‐ and three‐dimensional bodies by numerical integration, Archiv für Meteorologie, Geophysik und BioklimatologieA 33, 229–238.
    [Google Scholar]
  13. Hammer, S.1939. Terrain corrections for gravimeter stations, Geophysics4, 184–194.
    [Google Scholar]
  14. Helmert, F.R.1884. Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie. Teil 2.
  15. Kane, M.F.1962. A comprehensive system of terrain corrections using a digital computer, Geophysics27, 455–462.
    [Google Scholar]
  16. Kantas, K. and Zych, D.1967. Reduction of gravity observations with digital computer, Pure and Applied Geophysics68, 11–18.
    [Google Scholar]
  17. Ketelaar, A.C.R.1976. A system for computer‐calculation of the terrain correction in gravity surveying, Geoexploration14, 57–65.
    [Google Scholar]
  18. Krohn, D.H.1976. Gravity terrain corrections using multi‐quadratic equations, Geophysics41, 266–275.
    [Google Scholar]
  19. Ku, C.C.1977. A direct computation of gravity and magnetic anomalies caused by two‐ and three‐dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent point method and a simplified cubic spline, Geophysics42, 610–622.
    [Google Scholar]
  20. Plouff, D.1976. Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections, Geophysics41, 727–741.
    [Google Scholar]
  21. Sandburg, C.H.1958. Terrain corrections for an inclined plane in gravity computations, Geophysics23, 701–711.
    [Google Scholar]
  22. Steinhauser, P., Granser, H. and Hösch, K.1984. Gravimetrische Erkundung der Erzlager‐stätte Keban im Bereich Kudikan, Research paper no. 15, Department of Applied Geophysics, University of Vienna.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1987.tb00803.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error