1887
Volume 38 Number 8
  • E-ISSN: 1365-2478

Abstract

A

Channel waves generated in coal‐seams and their reflections from discontinuities are widely used to indicate the tectonic and stratigraphic features of coal deposits, resulting in greater efficiency and safety in coal‐mining. In the mining area of Ibbenbüren (F.R.G.) seam structures sometimes contain so‐called mylonite zones, which are crushed coal deposits capable of binding gas. If mining hits a mylonite zone this would probably not only reduce output of the mine, but could even cause gas explosions. To investigate the influence of a mylonite zone on the propagation of channel waves, Rayleigh channel wave measurements for 2D analogue models were performed and synthetic seismograms of Love channel waves were calculated.

Analogue modelling of the mylonite zone using Rayleigh seam waves within the seam was carried out using a perforation technique. Calculations were made to obtain an estimate of velocity reduction due to perforation. The results agree well with velocity values measured up to a perforation of 25% in a 2D epoxy resin model. Reflected channel wave energy was found by applying dispersion analysis in the case where the impedance reduction between the mylonite seam structure and the undisturbed seam was approximately 5%. The horizontal width of the mylonite structure was detectable from the time lag between reflected channel wave signals from both in‐seam borders of the mylonite zone. Resolution of two discrete borders was possible for a width of 1.5 λ's. The influence of a vertical fault, positioned within the mylonite zone, could only poorly be resolved.

Numerical model investigations of Love seam waves were concerned mainly with the variation of the horizontal width of the mylonite zone. Mylonite zones with dimensions of the order of 0.4 λ's allow definite statements about their widths from dispersion and spectral analyses. For zones with smaller widths down to 0.2 λ's, it was found that reflectivity and transmissivity analyses give a qualitative criterion for distinguishing a mylonite structure surrounding a fault from a pure fault.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.1990.tb01881.x
2006-04-27
2020-09-26
Loading full text...

Full text loading...

References

  1. Arnetzl, H. and Klinge, U.1982. Erfahrungen mit der Flözwellenseismik in der Vorfelderkundung. Glückauf118, 658–664.
    [Google Scholar]
  2. Behrens, J. and Waniek, L.1972. Modellseismik. Zeitschrift für Geophysik-Journal of Geophysics38, 1–44.
    [Google Scholar]
  3. Booer, A.K.1982. Underground Geophysics of Coal Seams. Developments in Geophysical Exploration Methods. A. A.Fitch (ed), 3, 1–32. Applied Science Publishers Ltd.
    [Google Scholar]
  4. Breitzke, M. and Dresen, L.1986. Love‐type seam waves in washout models of coal seams. Geophysical Prospecting34, 1167–1184.
    [Google Scholar]
  5. Buchanan, D.J.1983. In‐seam seismology: a method for detecting faults in coal seams. Developments in Geophysical Exploration Methods. A. A.Fitch (ed.), 5, 1–34. Applied Science Publishers Ltd.
    [Google Scholar]
  6. Dresen, L.1985. Flözwellenseismik für die untertägige Steinkohlenerkundung. Methoden der Angewandten Geophysik und Mathematische Verfahren in den Geowissenschaften. F.Bender (ed.), Band II, 261–298. Ferdinand Enke Verlag.
    [Google Scholar]
  7. Dresen, L. and Freystätter, S.1976. Rayleigh‐channel waves for the in‐seam seismic detection of discontinuities. Journal of Geophysics42, 111–129.
    [Google Scholar]
  8. Dziewonski, A.M. and Hales, A.L.1972. Numerical Analysis of Dispersed Seismic Waves . Methods in Computational Physics, Vol. 11. Academic Press, Inc.
    [Google Scholar]
  9. Emmerich, H. and Korn, M.1987. Incorporation of attenuation into time‐domain computations of seismic wave fields. Geophysics52, 1252–1264.
    [Google Scholar]
  10. Freystätter, S. and Dresen, L.1978. The influence of oblique‐dipping discontinuities on the use of Rayleigh channel waves for the in‐seam seismic reflection method. Geophysical Prospecting26, 1–15.
    [Google Scholar]
  11. Geldmacher, I.1988. Analoges Modellieren mylonitisierter Zonen im Steinkohlenbergbau und deren Untersuchung mit Rayleigh‐Flözwellen. Diplomarbeit, Ruhr‐Universität Bochum, Institut für Geophysik, F.R.G.
    [Google Scholar]
  12. Gilbershtein, P.G. and Gurvich, I.I.1962a. Geschwindigkeiten elastischer Wellen in perforierten Materialien in der seismischen Modellierung. Iswestja Wjischiska Jutschenija Sawjedjeniji11, 116–121. Translation from Russian.
    [Google Scholar]
  13. Gilbershtein, P.G. and Gurvich, I.I.1962b. Absorbierende elastische Wellen in perforiertem Plastik in der seismischen Modellierung. Iswestja Wjischiska Jutschenija Sawjedjeniji11, 124–138. Translation from Russian.
    [Google Scholar]
  14. Ivakin, B.N.1960. Methoden zur Steurung der Dichte und der elastischen Geschwindigkeiten bei seismischen Wellen in der zweidimensionalen Modellierung. Izvestja Akademij Najuk SSSR, 1149–1167. Translation from Russian.
  15. Ivakin, B.N. and Vasil'ev, F.O.1963. The wave properties of perforated plates for seismic modelling. Izvestja Akademij Nauk SSSR5, 248–260. Translation from Russian.
    [Google Scholar]
  16. Kerner, C. and Dresen, L.1985. The influence of dirt bands and faults on the propagation of Love seam waves. Journal of Geophysics57, 77–89.
    [Google Scholar]
  17. Klinge, U., Arnetzl, H., Krey, Th. and Rüter, H.1981. Trends in the detection of coal seam discontinuities by in‐seam seismic technics. 3rd International Coal Exploration Symposium, Calgary . Expanded Abstracts1–24, Miller Freeman Publications, Inc.
    [Google Scholar]
  18. Kodera, K., de Villedary, C. and Gendrin, R.1976. A new method for the numerical analysis of non‐stationary signals. Physics of the Earth and Planetary Interiors12, 142–150.
    [Google Scholar]
  19. Korn, M. and Stöckl, H.1982. Reflection and transmission of Love channel waves at coal seam discontinuities computed with a finite difference method. Journal of Geophysics50, 171–176.
    [Google Scholar]
  20. Krey, Th.1963. Channel waves as a tool of applied geophysics in coal mining. Geophysics28, 701–714.
    [Google Scholar]
  21. KÜppER, F.J.1958. Theoretische Untersuchungen über die Mehrfachaufstellung von Geophonen. Geophysical Prospecting6, 194–256.
    [Google Scholar]
  22. Kuschel, K.H.1981. Möglichkeiten und Grenzen insbesondere der Gebirgsdruckbeherrschung in größeren Tiefen. Glückauf117, 144–153.
    [Google Scholar]
  23. Landisman, M., Dziewonski, A. and Sato, Y.1969. Recent improvements in the analysis of surface wave observations. Geophysical Journal of the Royal Astronomical Society17, 369–403.
    [Google Scholar]
  24. Love, A.E.H.1944. A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover Publications, Inc.
    [Google Scholar]
  25. MacKenzie, J.K.1950. The elastic constants of a solid containing spherical holes. Proceedings of the Physical Society1, 2–11.
    [Google Scholar]
  26. Meister, J. and Dresen, L.1987. Hybrid seismic modelling: a technique to combine physical and computer methods for vertical wave incidence. Geophysical Prospecting35, 815–831.
    [Google Scholar]
  27. O'Brien, P.N.S. and Symes, M.P.1971. Model seismology. Reports on Progress in Physics34, 697–764.
    [Google Scholar]
  28. Oliver, J., Press, F. and Ewing, H.1954. Two‐dimensional seismology. Geophysics19, 202–219.
    [Google Scholar]
  29. Räder, D., Schott, W., Dresen, L. and Rüter, H.1985. Calculation of dispersion curves and amplitude‐depth distributions of Love channel waves in horizontally‐layered media. Geophysical Prospecting33, 800–816.
    [Google Scholar]
  30. Sato, I.1952. Velocity of elastic waves propagated in media with small holes. Bulletin of the Earthquake Research Institute, XXX, 3, University of Tokyo, 179–190.
    [Google Scholar]
  31. Steinbeck, J.1965. Modellseismische Untersuchungen von Rayleighwellen unter besonderer Berücksichtigung einer Deckschicht mit variabler Mächtigkeit. Dissertation, Mathematisch‐NaturwissenschaftlicheFakultät der Universität Hamburg , F.R.G .
    [Google Scholar]
  32. Stürznickel, T.1988. Numerisches Modellieren von mylonitsierten Zonen im Steinkohlenbergbau und deren Untersuchung mit Love‐Flözwellen. Diplomarbeit, Ruhr‐UniversitätBochum Institut für Geophysik, F.R.G.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.1990.tb01881.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error